15 research outputs found

    Hydrogenated fat diet intake during pregnancy and lactation modifies the PAI-1 gene expression in white adipose tissue of offspring in adult life

    Get PDF
    We examine whether feeding pregnant and lactating rats hydrogenated fats rich in trans fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 90-day-old offspring. Pregnant and lactating Wistar rats were fed with either a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). Upon weaning, the male pups were sorted into four groups: CC, mothers were receiving C and pups were kept on C; CT, mothers were receiving C and pups were fed with T; TT, mothers were receiving T and pups were kept on T; TC, mothers were receiving T and pups were fed with C. Pups' food intake and body weight were quantified weekly and the pups were killed at day 90 of life by decapitation. Blood and carcass as well as retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Food intake and body weight were lower in TC and TT, and metabolic efficiency was reduced in TT. Offspring of TT and TC rats had increased white adipose tissue PAI-1 gene expression. Insulin receptor was higher in TT than other groups. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation could promote deleterious consequences, even after the withdrawal of the causal factor

    Fish oil consumption prevents glucose intolerance and hypercorticosteronemy in footshock-stressed rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Environmental stress plays an important role in the development of glucose intolerance influencing lipid and glucose metabolism through sympathetic nervous system, cytokines and hormones such as glucocorticoids, catecholamines and glucagon. Otherwise, fish oil prevents glucose intolerance and insulin resistance. Although the mechanisms involved are not fully understood, it is known that sympathetic and HPA responses are blunted and catecholamines and glucocorticoids concentrations can be modulated by fish consumption. The aim of the present study was to evaluate whether fish oil, on a normal lipidic diet: 1) could prevent the effect of footshock-stress on the development of glucose intolerance; 2) modified adiponectin receptor and serum concentration; and 3) also modified TNF-α, IL-6 and interleukin-10 (IL-10) levels in adipose tissue and liver. The study was performed in thirty day-old male Wistar randomly assigned into four groups: no stressed (C) and stressed (CS) rats fed with control diet, and no stressed (F) and stressed (FS) rats fed with a fish oil rich diet. The stress was performed as a three daily footshock stress sessions.</p> <p>Results</p> <p>Body weight, carcass fat and protein content were not different among groups. FS presented a reduction on the relative weight of RET. Basal serum glucose levels were higher in CS and FS but 15 min after glucose load just CS remained with higher levels than other groups. Serum corticosterone concentration was increased in CS, this effect was inhibited in FS. However, 15 min after footshock-stress, corticosterone levels were similar among groups. IL-6 was increased in EPI of CS but fish oil consumption prevented IL-6 increase in FS. Similar levels of TNF-α and IL-10 in RET, EPI, and liver were observed among groups. Adipo R1 protein concentration was not different among groups. Footshock-stress did not modify AdipoR2 concentration, but fish oil diet increases AdipoR2 protein concentration.</p> <p>Conclusions</p> <p>Footshock-stress promotes glucose intolerance associated to corticosterone serum level and epididymal white adipose tissue IL-6 concentration increase. The fish oil consumption by stressed rats normalized the stress responses. These results suggested that fish oil intake could be useful to minimize or prevent the development of diseases associated to the stress.</p

    Ionic liquid-mediated recovery of carotenoids from the bactris gasipaes fruit waste and their application in food-packaging chitosan films

    Get PDF
    In this work, a process for the extraction and purification of carotenoids from the fruit Bactris gasipaes was developed. Ethanolic and aqueous solutions of ionic liquids (ILs) and surfactants were evaluated on the extraction of these pigments. Thus, we developed an optimized sustainable downstream process mediated by the best solvent with further isolation of the carotenoids and the recyclability of the IL used. The process was characterized not only in terms of efficiency but also regarding its environmental impact. The recyclability of the solvents as well as the high efficiency (maximum yield of extraction of carotenoids = 88.7 ± 0.9 μgcarotenoids·gdried biomass–1) and the low environmental impact of the integrated process developed in this work were demonstrated. In the end, in order to incorporate functional activity for an alternative food-packaging material, carotenoids were successfully applied on the preparation of chitosan-based films with excellent results regarding their mechanical parameters and antioxidant activity.publishe

    Anthocyanins ameliorate obesity-associated metainflammation: preclinical and clinical evidence

    No full text
    The growing rates of obesity worldwide call for intervention strategies to help control the pathophysiological consequences of weight gain. The use of natural foods and bioactive compounds has been suggested as such a strategy because of their recognized antioxidant and anti-inflammatory properties. For example, polyphenols, especially anthocyanins, are candidates for managing obesity and its related metabolic disorders. Obesity is well known for the presence of metainflammation, which has been labeled as an inflammatory activation that leads to a variety of metabolic disorders, usually related to increased oxidative stress. Considering this, anthocyanins may be promising natural compounds able to modulate several intracellular mechanisms, mitigating oxidative stress and metainflammation. A wide variety of foods and extracts rich in anthocyanins have become the focus of research in the field of obesity. Here, we bring together the current knowledge regarding the use of anthocyanins as an intervention tested in vitro, in vivo, and in clinical trials to modulate metainflammation. Most recent research applies a wide variety of extracts and natural sources of anthocyanins, in diverse experimental models, which represents a limitation of the research field. However, the literature is sufficiently consistent to establish that the in-depth molecular analysis of gut microbiota, insulin signaling, TLR4-triggered inflammation, and oxidative stress pathways reveals their modulation by anthocyanins. These targets are interconnected at the cellular level and interact with one another, leading to obesity-associated metainflammation. Thus, the positive findings with anthocyanins observed in preclinical models might directly relate to the positive outcomes in clinical studies. In summary and based on the entirety of the relevant literature, anthocyanins can mitigate obesity-related perturbations in gut microbiota, insulin resistance, oxidative stress and inflammation and therefore may contribute as a therapeutic tool in people living with obesity.</p

    Insights on the use of alternative solvents and technologies to recover bio-based food pigments

    No full text
    This review will discuss, under the Circular Economy and Biorefinery concepts, the performance of the alternative solvents in the downstream process to recover natural pigments in a more sustainable way. Conventionally, pigments marketed on an industrial scale are produced through chemical synthesis by using petroleum derivatives as the main raw material. Also, the current production chain of the synthetic dyes is linear, with no solvent recycling and waste generation. Thus, the most promising processes of extraction and purification of natural pigments and strategies on the polishing of the solvents are here reviewed. In this review, the use of alternative solvents, namely, ionic liquids, eutectic solvents, aqueous solutions of surfactants, and edible oils, for recovering natural pigments was reviewed. Works discussing higher extraction yields and selectivity, while maintaining the stability of the target pigments, were reported. Also, a panorama between Sustainability and Circular Economy prospection was discussed for better comprehension of the main advances in the field. Behind the analysis of the works published so far on the theme, the most important lacunas to overcome in the next years on the field were pointed out and discussed. Also, the future trends and new perspectives to achieve the economic viability and sustainability of the processes using alternative solvents will be scrutinized.publishe

    Anti-inflammatory effects of oleic acid and the anthocyanin keracyanin alone and in combination: effects on monocyte and macrophage responses and the NF-kappa B pathway

    No full text
    The recruitment of monocytes and activation of macrophages is essential for homeostasis but is also related to the development and progression of cardiometabolic diseases. The management of inflammation through dietary components has been widely investigated. Two renowned components that may influence inflammation are unsaturated fatty acids such as oleic acid (OA; 18:1cis-9) and antioxidant compounds like anthocyanins. Molecular and metabolic effects of such bioactive compounds are usually investigated in isolation, whereas they may be present in combination in foods or in the diet. Considering this, we aimed to analyse the effects of OA and the anthocyanin keracyanin (AC) alone and in combination on toll-like receptor-mediated inflammatory responses in monocytes and macrophages. For this, THP-1-derived macrophages and monocytes were exposed to 3 treatments: OA, AC, or the combination (OAAC) and then stimulated with lipopolysaccharide. Inflammatory-related gene expression and protein concentrations of IL-1β, TNF-α, IL-6, MCP-1 and IL-10 were assessed. Also, NFκBp65, IκBα and PPAR-γ protein expression were determined. OA, AC and OAAC decreased pNFκBp65, PPARγ, IκBα, TNF-α, IL-1β, IL-6, and MCP-1 and increased IL-10. MCP-1 protein expression was lower with OAAC than with either OA and AC alone. Compared to CTL, OAAC decreased mRNA for TLR4, IκKα, IκBα, NFκB1, MCP-1, TNF-α, IL-6, and IL-1β more than OA or AC did alone. Also, IL-10 mRNA was increased by OAAC compared with CTL, OA and AC. In summary, OA and AC have anti-inflammatory effects individually but their combination (OAAC) exerts a greater effect

    The neuroligins and the synaptic pathway in Autism Spectrum Disorder.

    No full text
    International audienceThe genetics underlying autism spectrum disorder (ASD) is complex and heterogeneous, and de novo variants are found in genes converging in functional biological processes. Neuronal communication, including trans-synaptic signaling involving two families of cell-adhesion proteins, the presynaptic neurexins and the postsynaptic neuroligins, is one of the most recurrently affected pathways in ASD. Given the role of these proteins in determining synaptic function, abnormal synaptic plasticity and failure to establish proper synaptic contacts might represent mechanisms underlying risk of ASD. More than 30 mutations have been found in the neuroligin genes. Most of the resulting residue substitutions map in the extracellular, cholinesterase-like domain of the protein, and impair protein folding and trafficking. Conversely, the stalk and intracellular domains are less affected. Accordingly, several genetic animal models of ASD have been generated, showing behavioral and synaptic alterations. The aim of this review is to discuss the current knowledge on ASD-linked mutations in the neuroligin proteins and their effect on synaptic function, in various brain areas and circuits

    Ionic liquid-high performance extractive approach to recover carotenoids from Bactris gasipaes fruits

    No full text
    Nowadays, one of the biggest challenges for society is the development of appropriate technologies to process the waste residue produced worldwide. In the food sector, the generated waste is estimated to be nearly billions of tons annually. Brazil is one of the most representative examples of the economic and industrial potential of underexplored residues and raw materials. The palm heart, scientifically known as Bactris gasipaes, mainly its fruits, is one of the many examples found in Brazilian flora. The fruits have significant amounts of carotenoids, namely, the all-trans-β-carotene, all-trans-lycopene and the rare all-trans-γ-carotene, which are considered as excellent raw materials of commercial interest. However, the main challenge that remains is their efficient recovery. This work proposes the development of a performant process of extraction mediated by the use of ionic liquid (IL)-based ethanolic solutions. Four ILs were examined, as well as the solid–liquid ratio R(S/L), number of extractions, the time of extraction, the co-solvent-ratio R(IL/E) and the homogenization method employed. After selecting the best solvent ([C4mim][BF4]) and process conditions (extraction yield of 172 ± 18 µgcarotenoids gdried biomass−1 ), the IL-ethanolic solution recyclability was tested by freezing/precipitating the IL (maximum of 94% of IL recovered), proving its success for at least 10 cycles while decreasing the process carbon footprint by 50% compared with the conventional method using acetone.publishe
    corecore