47 research outputs found

    An empirical evaluation of prediction by partial matching in assembly assistance systems

    Get PDF
    Industrial assistive systems result from a multidisciplinary effort that integrates IoT (and Industrial IoT), Cognetics, and Artificial Intelligence. This paper evaluates the Prediction by Partial Matching algorithm as a component of an assembly assistance system that supports factory workers, by providing choices for the next manufacturing step. The evaluation of the proposed method was performed on datasets collected within an experiment involving trainees and experienced workers. The goal is to find out which method best suits the datasets in order to be integrated afterwards into our context-aware assistance system. The obtained results show that the Prediction by Partial Matching method presents a significant improvement with respect to the existing Markov predictors

    Optimal Matrix Product States for the Heisenberg Spin Chain

    Full text link
    We present some exact results for the optimal Matrix Product State (MPS) approximation to the ground state of the infinite isotropic Heisenberg spin-1/2 chain. Our approach is based on the systematic use of Schmidt decompositions to reduce the problem of approximating for the ground state of a spin chain to an analytical minimization. This allows to show that results of standard simulations, e.g. density matrix renormalization group and infinite time evolving block decimation, do correspond to the result obtained by this minimization strategy and, thus, both methods deliver optimal MPS with the same energy but, otherwise, different properties. We also find that translational and rotational symmetries cannot be maintained simultaneously by the MPS ansatz of minimum energy and present explicit constructions for each case. Furthermore, we analyze symmetry restoration and quantify it to uncover new scaling relations. The method we propose can be extended to any translational invariant Hamiltonian.Comment: 10 pages, 3 figures; typos adde

    Concatenated tensor network states

    Full text link
    We introduce the concept of concatenated tensor networks to efficiently describe quantum states. We show that the corresponding concatenated tensor network states can efficiently describe time evolution and possess arbitrary block-wise entanglement and long-ranged correlations. We illustrate the approach for the enhancement of matrix product states, i.e. 1D tensor networks, where we replace each of the matrices of the original matrix product state with another 1D tensor network. This procedure yields a 2D tensor network, which includes -- already for tensor dimension two -- all states that can be prepared by circuits of polynomially many (possibly non-unitary) two-qubit quantum operations, as well as states resulting from time evolution with respect to Hamiltonians with short-ranged interactions. We investigate the possibility to efficiently extract information from these states, which serves as the basic step in a variational optimization procedure. To this aim we utilize known exact and approximate methods for 2D tensor networks and demonstrate some improvements thereof, which are also applicable e.g. in the context of 2D projected entangled pair states. We generalize the approach to higher dimensional- and tree tensor networks.Comment: 16 pages, 4 figure

    Cause of Death and Predictors of All-Cause Mortality in Anticoagulated Patients With Nonvalvular Atrial Fibrillation : Data From ROCKET AF

    Get PDF
    M. Kaste on työryhmän ROCKET AF Steering Comm jäsen.Background-Atrial fibrillation is associated with higher mortality. Identification of causes of death and contemporary risk factors for all-cause mortality may guide interventions. Methods and Results-In the Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation (ROCKET AF) study, patients with nonvalvular atrial fibrillation were randomized to rivaroxaban or dose-adjusted warfarin. Cox proportional hazards regression with backward elimination identified factors at randomization that were independently associated with all-cause mortality in the 14 171 participants in the intention-to-treat population. The median age was 73 years, and the mean CHADS(2) score was 3.5. Over 1.9 years of median follow-up, 1214 (8.6%) patients died. Kaplan-Meier mortality rates were 4.2% at 1 year and 8.9% at 2 years. The majority of classified deaths (1081) were cardiovascular (72%), whereas only 6% were nonhemorrhagic stroke or systemic embolism. No significant difference in all-cause mortality was observed between the rivaroxaban and warfarin arms (P=0.15). Heart failure (hazard ratio 1.51, 95% CI 1.33-1.70, P= 75 years (hazard ratio 1.69, 95% CI 1.51-1.90, P Conclusions-In a large population of patients anticoagulated for nonvalvular atrial fibrillation, approximate to 7 in 10 deaths were cardiovascular, whereasPeer reviewe

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    CyProF - insights from a framework for designing cyber-physical systems in production environments

    No full text
    There is little experience in integrating cyber-physical systems (CPS) in production environments nowadays. A coordinated framework with reference architecture, methodology and procedural model can support the adaption of CPS by providing a pre-defined structure and guidelines. This paper describes such a framework, named CyProF, for designing CPS-based solutions in production environments. Engineers are supported by this framework in handling the complexity during the design phase. Additionally, this paper explains how the framework was used in a use case to reduce engineering efforts for a CPS-based demonstrator
    corecore