24 research outputs found

    Physiological responses of Daphnia pulex to acid stress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acidity exerts a determining influence on the composition and diversity of freshwater faunas. While the physiological implications of freshwater acidification have been intensively studied in teleost fish and crayfish, much less is known about the acid-stress physiology of ecologically important groups such as cladoceran zooplankton. This study analyzed the extracellular acid-base state and CO<sub>2 </sub>partial pressure (<it>P</it><sub>CO2</sub>), circulation and ventilation, as well as the respiration rate of <it>Daphnia pulex </it>acclimated to acidic (pH 5.5 and 6.0) and circumneutral (pH 7.8) conditions.</p> <p>Results</p> <p><it>D. pulex </it>had a remarkably high extracellular pH of 8.33 and extracellular <it>P</it><sub>CO2 </sub>of 0.56 kPa under normal ambient conditions (pH 7.8 and normocapnia). The hemolymph had a high bicarbonate concentration of 20.9 mM and a total buffer value of 51.5 meq L<sup>-1 </sup>pH<sup>-1</sup>. Bicarbonate covered 93% of the total buffer value. Acidic conditions induced a slight acidosis (ΔpH = 0.16–0.23), a 30–65% bicarbonate loss, and elevated systemic activities (tachycardia, hyperventilation, hypermetabolism). pH 6.0 animals partly compensated the bicarbonate loss by increasing the non-bicarbonate buffer value from 2.0 to 5.1 meq L<sup>-1 </sup>pH<sup>-1</sup>. The extracellular <it>P</it><sub>CO2 </sub>of pH 5.5 animals was significantly reduced to 0.33 kPa, and these animals showed the highest tolerance to a short-term exposure to severe acid stress.</p> <p>Conclusion</p> <p>Chronic exposure to acidic conditions had a pervasive impact on <it>Daphnia's </it>physiology including acid-base balance, extracellular <it>P</it><sub>CO2</sub>, circulation and ventilation, and energy metabolism. Compensatory changes in extracellular non-bicarbonate buffering capacity and the improved tolerance to severe acid stress indicated the activation of defense mechanisms which may result from gene-expression mediated adjustments in hemolymph buffer proteins and in epithelial properties. Mechanistic analyses of the interdependence between extracellular acid-base balance and CO<sub>2 </sub>transport raised the question of whether a carbonic anhydrase (CA) is involved in the catalysis of the <inline-formula><graphic file="1472-6793-9-9-i1.gif"/></inline-formula> reaction, which led to the discovery of 31 CA-genes in the genome of <it>D. pulex</it>.</p

    Data on ADME parameters of bisphenol A and its metabolites for use in physiologically based pharmacokinetic modelling

    Get PDF
    The paper presents the collection of physicochemical parameters of bisphenol A (BPA) and its sulfate (BPAS) and glucuronide (BPAG) conjugates, accompanied by data characterizing their absorption, distribution, metabolism and excretion (ADME) behavior following oral administration of BPA. The data were collected from open literature sources and publicly available databases. Additionally, data calculated by using the MarvinSketch 18.30.0 software or predicted by relevant QSAR models built in Simcyp® Simulator were also used. All data were analysed and are fit for purpose if necessary to ensure a reliable prediction of pharmacokinetics of BPA and its conjugates. The data selection process and reasoning for fitting is provided to allow critical assessment and to ensure data transparency. Finally, the sensitivity analysis was performed to assess the influence of the selected parameters on the PBPK model predictions

    Migration of polycyclic aromatic hydrocarbons from a polymer surrogate through the stratum corneum layer of the skin

    Get PDF
    In this study, we determined partition (Ksc/m) and diffusion (Dsc) coefficients of five different polycyclic aromatic hydrocarbons (PAH) migrating from squalane into and through the stratum corneum (s.c.) layer of the skin. Carcinogenic PAH have previously been detected in numerous polymer-based consumer products, especially those dyed with carbon black. Upon dermal contact with these products, PAH may penetrate into and through the viable layers of the skin by passing the s.c. and thus may become bioavailable. Squalane, a frequent ingredient in cosmetics, has also been used as a polymer surrogate matrix in previous studies. Ksc/m and Dsc are relevant parameters for risk assessment because they allow estimating the potential of a substance to become bioavailable upon dermal exposure. We developed an analytical method involving incubation of pigskin with naphthalene, anthracene, pyrene, benzo[a]pyrene and dibenzo[a,h]pyrene in Franz diffusion cell assays under quasi-infinite dose conditions. PAH were subsequently quantified within individual s.c. layers by gas chromatography coupled to tandem mass spectrometry. The resulting PAH depth profiles in the s.c. were fitted to a solution of Fick’s second law of diffusion, yielding Ksc/m and Dsc. The decadic logarithm logKsc/m ranged from −0.43 to +0.69 and showed a trend to higher values for PAH with higher molecular masses. Dsc, on the other hand, was similar for the four higher molecular mass PAH but about 4.6-fold lower than for naphthalene. Moreover, our data suggests that the s.c./viable epidermis boundary layer represents the most relevant barrier for the skin penetration of higher molecular mass PAH. Finally, we empirically derived a mathematical description of the concentration depth profiles that better fits our data. We correlated the resulting parameters to substance specific constants such as the logarithmic octanol-water partition coefficient logP, Ksc/m and the removal rate at the s.c./viable epidermis boundary layer

    ノバリケン胚における心拍リズムの発達

    Get PDF
    The heart rate(HR) of Muscovy duck embryos (Cairina moschata f. domestica) was continuously recorded from as early as the 21st day of incubation (D21) until hatching (D34/35). The aim of the study was to investigate the influence of phonoperiods consisting of different acoustic stimuli on the course of HR and the development of HR periodicities during this period. Incubation was carried out at a constant temperature and in constant darkness. Until D25 HR was dominated by decelerative fluctuations only, indicating a main input from the parasympathetic system on the heart. Later sympathetic influences increased progressively. HR periodicity was investigated by means of x2-periodogram and fast Fourier transformation. Between D26 and D30 statistically significant and stable HR periodicities developed gradually. They had periods in the range from 5 to 38 hours. Ultra-, circa- and infradian rhythms (28h, respectively) occurred in parallel in some cases in the same embryo. During these important periods HR courses were dissimilar between individual embryos and had different intensities. There was no indication that acoustic stimulation (phonoperiods) had any effect on the development of HR periodicities.特集 : 「動物の心拍リズム」国際シンポジウム発表論文選

    Acclimatory responses of the Daphnia pulex proteome to environmental changes. II. Chronic exposure to different temperatures (10 and 20°C) mainly affects protein metabolism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temperature affects essentially every aspect of the biology of poikilothermic animals including the energy and mass budgets, activity, growth, and reproduction. While thermal effects in ecologically important groups such as daphnids have been intensively studied at the ecosystem level and at least partly at the organismic level, much less is known about the molecular mechanisms underlying the acclimation to different temperatures. By using 2D gel electrophoresis and mass spectrometry, the present study identified the major elements of the temperature-induced subset of the proteome from differently acclimated <it>Daphnia pulex</it>.</p> <p>Results</p> <p>Specific sets of proteins were found to be differentially expressed in 10°C or 20°C acclimated <it>D. pulex</it>. Most cold-repressed proteins comprised secretory enzymes which are involved in protein digestion (trypsins, chymotrypsins, astacin, carboxypeptidases). The cold-induced sets of proteins included several vitellogenin and actin isoforms (cytoplasmic and muscle-specific), and an AAA+ ATPase. Carbohydrate-modifying enzymes were constitutively expressed or down-regulated in the cold.</p> <p>Conclusion</p> <p>Specific sets of cold-repressed and cold-induced proteins in <it>D. pulex </it>can be related to changes in the cellular demand for amino acids or to the compensatory control of physiological processes. The increase of proteolytic enzyme concentration and the decrease of vitellogenin, actin and total protein concentration between 10°C and 20°C acclimated animals reflect the increased amino-acids demand and the reduced protein reserves in the animal's body. Conversely, the increase of actin concentration in cold-acclimated animals may contribute to a compensatory mechanism which ensures the relative constancy of muscular performance. The sheer number of peptidase genes (serine-peptidase-like: > 200, astacin-like: 36, carboxypeptidase-like: 30) in the <it>D. pulex </it>genome suggests large-scaled gene family expansions that might reflect specific adaptations to the lifestyle of a planktonic filter feeder in a highly variable aquatic environment.</p

    The Embryonic Stem Cell Test as Tool to Assess Structure-Dependent Teratogenicity: The Case of Valproic Acid

    Get PDF
    Teratogenicity can be predicted in vitro using the embryonic stem cell test (EST). The EST, which is based on the morphometric measurement of cardiomyocyte differentiation and cytotoxicity parameters, represents a scientifically validated method for the detection and classification of chemicals according to their teratogenic potency. Furthermore, an abbreviated protocol applying flow cytometry of intracellular marker proteins to determine differentiation into the cardiomyocyte lineage is available. Although valproic acid (VPA) is in worldwide clinical use as antiepileptic drug, it exhibits two severe side effects, i.e., teratogenicity and hepatotoxicity. These limitations have led to extensive research into derivatives of VPA. Here we chose VPA as model compound to test the applicability domain and to further evaluate the reliability of the EST. To this end, we study six closely related congeners of VPA and demonstrate that both the standard and the molecular flow cytometry-based EST are well suited to indicate differences in the teratogenic potency among VPA analogs that differ only in chirality or side chain length. Our data show that identical results can be obtained by using the standard EST or a shortened protocol based on flow cytometry of intracellular marker proteins. Both in vitro protocols enable to reliably determine differentiation of murine stem cells toward the cardiomyocyte lineage and to assess its chemical-mediated inhibition

    Estrogen and Progestogen Correlates of the Structure of Female Copulation Calls in Semi-Free-Ranging Barbary Macaques (Macaca sylvanus)

    Get PDF
    Females of many Old World primates produce conspicuous vocalizations in combination with copulations. Indirect evidence exists that in Barbary macaques (Macaca sylvanus), the structure of these copulation calls is related to changes in reproductive hormone levels. However, the structure of these calls does not vary significantly around the timing of ovulation when estrogen and progestogen levels show marked changes. We here aimed to clarify this paradox by investigating how the steroid hormones estrogen and progesterone are related to changes in the acoustic structure of copulation calls. We collected data on semi-free-ranging Barbary macaques in Gibraltar and at La Forêt des Singes in Rocamadour, France. We determined estrogen and progestogen concentrations from fecal samples and combined them with a fine-grained structural analysis of female copulation calls (N = 775 calls of 11 females). Our analysis indicates a time lag of 3 d between changes in fecal hormone levels, adjusted for the excretion lag time, and in the acoustic structure of copulation calls. Specifically, we found that estrogen increased the duration and frequency of the calls, whereas progestogen had an antagonistic effect. Importantly, however, variation in acoustic variables did not track short-term changes such as the peak in estrogen occurring around the timing of ovulation. Taken together, our results help to explain why female Barbary macaque copulation calls are related to changes in hormone levels but fail to indicate the fertile phase

    Facial expressions modulate the ontogenetic trajectory of gaze-following among monkeys

    No full text
    Gaze-following, the tendency to direct one’s attention to locations looked at by others, is a crucial aspect of social cognition in human and nonhuman primates. Whereas the development of gaze-following has been intensely studied in human infants, its early ontogeny in nonhuman primates has received little attention. Combining longitudinal and cross-sectional observational data from Barbary macaques at ‘La Forêt des Singes’, we show here that gaze-following among conspecifics develops within the first year of life with a rapid increase between 5 and 6 months, reaching adult levels at 1 year. Sex, rank, and relatedness of the animal whose gaze the subject followed did not affect gaze-following rates. Interestingly, however, the behavior was enhanced in all age classes if a gaze-cue was accompanied by a facial expression. Furthermore, the effect of facial expressions had a modulatory influence on the ontogenetic trajectory of gaze-following, suggesting that it is of functional significance in the development of the behavior. Follow-up analyses revealed that one specific facial expression that is given in response to social interactions between third parties was particularly efficient in eliciting gaze-following responses, indicating the importance of cues that are able to guide the acquisition of social information. Taken together, these results suggest that the development and the operation of gaze-following are tuned to the social and physical characteristics of a species’ environment

    Physiologically based modelling of dermal absorption and kinetics of consumer-relevant chemicals : a case study with exposure to bisphenol A from thermal paper

    Get PDF
    Bisphenol A (BPA) is one of the best studied industrial chemicals in terms of exposure, toxicity, and toxicokinetics. This renders it an ideal candidate to exploit the recent advancements in physiologically based pharmacokinetic (PBPK) modelling to support risk assessment of BPA specifically, and of other consumer-relevant hazardous chemicals in general. Using the exposure from thermal paper as a case scenario, this study employed the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) model available in the Simcyp® Simulator to simulate the dermal toxicokinetics of BPA at local and systemic levels. Sensitivity analysis helped to identify physicochemical and physiological factors influencing the systemic exposure to BPA. The iterative modelling process was as follows: (i) development of compound files for BPA and its conjugates, (ii) setting-up of a PBPK model for intravenous administration, (iii) extension for oral administration, and (iv) extension for exposure via skin (i.e., hand) contact. A toxicokinetic study involving hand contact to BPA-containing paper was used for model refinement. Cumulative urinary excretion of total BPA had to be employed for dose reconstruction. PBPK model performance was verified using the observed serum BPA concentrations. The predicted distribution across the skin compartments revealed a depot of BPA in the stratum corneum (SC). These findings shed light on the role of the SC to act as temporary reservoir for lipophilic chemicals prior to systemic absorption, which inter alia is relevant for the interpretation of human biomonitoring data and for establishing the relationship between external and internal measures of exposure

    Data on ADME parameters of bisphenol A and its metabolites for use in physiologically based pharmacokinetic modelling

    No full text
    The paper presents the collection of physicochemical parameters of bisphenol A (BPA) and its sulfate (BPAS) and glucuronide (BPAG) conjugates, accompanied by data characterizing their absorption, distribution, metabolism and excretion (ADME) behavior following oral administration of BPA. The data were collected from open literature sources and publicly available databases. Additionally, data calculated by using the MarvinSketch 18.30.0 software or predicted by relevant QSAR models built in Simcyp® Simulator were also used. All data were analysed and are fit for purpose if necessary to ensure a reliable prediction of pharmacokinetics of BPA and its conjugates. The data selection process and reasoning for fitting is provided to allow critical assessment and to ensure data transparency. Finally, the sensitivity analysis was performed to assess the influence of the selected parameters on the PBPK model predictions
    corecore