116 research outputs found

    Rhombohedral calcite precipitation from CO2-H2O-Ca(OH)2 slurry under supercritical and gas CO2 media

    Get PDF
    The formation of solid calcium carbonate (CaCO3) from aqueous solutions or slurries containing calcium and carbon dioxide (CO2) is a complex process of considerable importance in the ecological, geochemical and biological areas. Moreover, the demand for powdered CaCO3 has increased considerably recently in various fields of industry. The aim of this study was therefore to synthesize fine particles of calcite with controlled morphology by hydrothermal carbonation of calcium hydroxide at high CO2 pressure (initial PCO2=55 bar) and at moderate and high temperature (30 and 90 degrees C). The morphology of precipitated particles was identified by transmission electron microscopy (TEM/EDS) and scanning electron microscopy (SEM/EDS). In addition, an X-ray diffraction analysis was performed to investigate the carbonation efficiency and purity of the solid product. Carbonation of dispersed calcium hydroxide in the presence of supercritical (PT=90 bar, T=90 degrees C) or gaseous (PT=55 bar, T=30 degrees C) CO2 led to the precipitation of sub-micrometric isolated particles (<1μ\mum) and micrometric agglomerates (<5μ\mum) of calcite. For this study, the carbonation efficiency (Ca(OH)2-CaCO3 conversion) was not significantly affected by PT conditions after 24 h of reaction. In contrast, the initial rate of calcium carbonate precipitation increased from 4.3 mol/h in the "90bar-90 degrees C" system to 15.9 mol/h in the "55bar-30 degrees C" system. The use of high CO2 pressure may therefore be desirable for increasing the production rate of CaCO3, carbonation efficiency and purity, to approximately 48 kg/m3h, 95% and 96.3%, respectively in this study. The dissipated heat for this exothermic reaction was estimated by calorimetry to be -32 kJ/mol in the "90bar-90 degrees C" system and -42 kJ/mol in the "55bar-30 degrees C" system

    Molecular and evolutionary characteristics of the fraction of human alpha satellite DNA associated with CENP-A at the centromeres of chromosomes 1, 5, 19, and 21

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mode of evolution of the highly homogeneous Higher-Order-Repeat-containing alpha satellite arrays is still subject to discussion. This is also true of the CENP-A associated repeats where the centromere is formed.</p> <p>Results</p> <p>In this paper, we show that the molecular mechanisms by which these arrays evolve are identical in multiple chromosomes: i) accumulation of crossovers that homogenise and expand the arrays into different domains and subdomains that are mostly unshared between homologues and ii) sporadic mutations and conversion events that simultaneously differentiate them from one another. Individual arrays are affected by these mechanisms to different extents that presumably increase with time. Repeats associated with CENP-A, where the centromere is formed, are subjected to the same evolutionary mechanisms, but constitute minor subsets that exhibit subtle sequence differences from those of the bulk repeats. While the DNA sequence <it>per se </it>is not essential for centromere localisation along an array, it appears that certain sequences can be selected against. On chromosomes 1 and 19, which are more affected by the above evolutionary mechanisms than are chromosomes 21 and 5, CENP-A associated repeats were also recovered from a second homogeneous array present on each chromosome. This could be a way for chromosomes to sustain mitosis and meiosis when the normal centromere locus is ineluctably undermined by the above mechanisms.</p> <p>Conclusion</p> <p>We discuss, in light of these observations, possible scenarios for the normal evolutionary fates of human centromeric regions.</p

    Both experimental study and numerical modelling of the effect of temperature gradient on CO2 injection

    No full text
    CO2 injection and underground storage obviously requires dealing with temperature differences between the injection well and the reservoir. Temperature enhances both species transport and reactions kinetics, while CO2 solubility also greatly decreases with temperature. This point could be of great importance especially in wellbore surroundings, although it has not been the subject of devoted studies up to now. To assess this issue, an experimental set up, COTAGES, has been designed (Fig.1). It consists in a 0.72m-long cylindrical autoclave (the diameter is 2.1cm) that can be filled with 12 fiberglass/teflon packets containing 12.5 grams of mineral grains and a pre-equilibrated saline aqueous solution. When loaded, one end of the autoclave is heaten up and maintained at 100°C. After having reached a steady-state, the other end is around 30°C. Finally, CO2 is injected in the cold zone (100 bars) and, from this moment, the experiment lasts 1 month while both pressure and temperatures (3 zones) are being monitored. The first results show the same general trend for both a reservoir rock such as oolitic limestone (Lavoux, France) and clay minerals such as COx argillite (Lundin, France). In these two experiments, a global mass loss is observed for all the packets except for those comprised between 75 and 95°C. There, a mass gain is noted and is remarkably important in the case of clay (greater than 11.5%). The greater losses are recorded around 65-70°C and are also of greater importance for COx clay (up to 10.0%). During the whole experiments, quite important variations of the total pressure are observed. Even if they are partly related to CO2 dissolution into water and to temperature variations (due to regulation), they shall also depend on involved chemical reactions. Indeed, after injection, pressure drastically decreases (up to 50 bar less). Since CO2 solubility is higher in the cold zone (more than 4 times), the aqueous solution gets more acidic there. It leads to a more important carbonates dissolution, thus to increases of CO2 fugacity and consequently of the global pressure. Furthermore, the calcium content tends to be greater in this cold-dissolution zone then Ca diffuses towards the hotter zone locally and it implies calcite precipitation. As evidence of this phenomenon, plugs, related to massive calcite precipitation, are observed in these regions and newly crystallized calcite can be seen on SEM images. In order to clearly understand the reasons of the observed behaviour, numerical computations performed with the reaction-transport code HYTEC have to be run. Several scenarios can thus be simulated to check various assumptions. Firstly, different initial repartitions of the CO2 can be tested: in some kind of reservoir in the cold/injection zone or everywhere in the autoclave (due to high initial pressure gradient). Secondly, the competition between the implied processes, their respective kinetics and their temperature dependance can be assessed too: thermodynamics and/or kinetics of chemical reactions and transport kinetics (diffusion). Modeling becomes then of great help to interpret the experimental results and even to better design the evolution of the experimental set-up

    CO2 Injectivity in geological storages: an overview of program and results of the GeoCarbone-Injectivity Project

    Get PDF
    International audienceThe objective of the GeoCarbone-Injectivity project was to develop a methodology to study the complex phenomena involved in the near wellbore region during CO2 injection. This paper presents an overview of the program and results of the project, and some further necessary developments. The proposed methodology is based on experiments and simulations at the core scale, in order to understand (physical modelling and definition of constitutive laws) and quantify (calibration of simulation tools) the mechanisms involved in injectivity variations: fluid/rock interactions, transport mechanisms, geomechanical effects. These mechanisms and the associated parameters have then to be integrated in the models at the wellbore scale. The methodology has been applied for the study of a potential injection of CO2 in the Dogger geological formation of the Paris Basin, in collaboration with the other ANR GeoCarbone projects

    The Géocarbone-Monitoring Project: Main results and recommendations for monitoring deep geological CO2 storage in the Paris Basin

    Get PDF
    International audienceThe aim of the Géocarbone-Monitoring research project was the evaluation and testing, as far as possible, of the different monitoring methods that might be applied in the specific context of the Paris Basin. Their main objectives are to: detect and map CO2 in the reservoir rocks;detect and quantify possible leaks between the reservoir and the surface. The partners developed several thoughts and research concerning the various monitoring methods. This enabled drawing up a critical overview of existing methods and proposing leads for further work. At the end of the project, recommendations were made for the stakeholders of CO2 storage, i.e. the government departments regulating storage, decision-makers, and future site operators. In addition, a proposal was made for the general design and implementation of a monitoring programme of an injection test in the Paris Basin, within a depleted reservoir or a deep aquifer

    Evaluating sealing efficiency of caprocks for CO2 storage: an overview of the Geocarbone Integrity program and results

    Get PDF
    8 pagesInternational audienceThe objectives of the Geocarbone-Integrity program are to develop techniques, methodologies and knowledge concerning the long term confinement of CO2 in geological storage. Linked to other French programs such as Geocarbone Injectivity or Picoref, it is an integrated approach involving geochemistry, petrophysics, geology and geomechanics. Different scales must be considered in order to describe caprocks: from the pore or grain scale in petrophysics and geochemistry, to regional scale in geology and geomechanics. The program focused on a specific site of the Paris basin but the methodologies developed are general and can be applied elsewhere

    Quantitative monitoring of dissolved gases in a flooded borehole: calibration of the analytical tools

    Get PDF
    Gas monitoring is a prerequisite to understanding the exchange, diffusion, and migration processes of natural gases within underground environments, which are involved in several applications such as geological sequestration of CO2. In this study, three different techniques (micro-GC, infrared, and Raman spectroscopies) were deployed on an experimental flooded borehole for monitoring purposes after CO2 injection. The aim was to develop a real-time chemical monitoring device to follow dissolved gas concentrations by measurements in water inside the borehole but also at the surface through a gas collection system in equilibrium with the borehole water. However, all three techniques must be calibrated to provide the most accurate quantitative data. For this, a first step of calibration in the laboratory was carried out. A new calibrations were required to determine partial pressure and/or concentrations of gases in water or in the gas collection system. For gas phase analysis, micro-GC, FTIR spectroscopy, and Raman spectroscopy were compared. New calibration of the micro-GC was done for CO2, CH4, and N2 with uncertainty from ±100 ppm to 1.5 mol% depending on the bulk concentration and the type of gas. The FTIR and Raman spectrometers were previously calibrated for CO2, and CO2, N2, O2, CH4, and H2O, respectively with an accuracy of 1–6% depending on concentration scale, gas and spectrometer. Dissolved CO2 in water was measured using a Raman spectrometer equipped with an immersion probe. The uncertainty on the predicted dissolved CO2 concentration and partial pressure was ±0.003 mol·kg−1 and ±0.05 bar, respectively

    Role of Impurities on CO2 Injection: Experimental and Numerical Simulations of Thermodynamic Properties of Water-salt-gas Mixtures (CO2 + Co-injected Gases) Under Geological Storage Conditions

    Get PDF
    International audienceRole of impurities on CO 2 injection: experimental and numerical simulations of thermodynamic properties of water-salt-gas mixtures (CO 2 + co-injected gases) under geological storage conditions Abstract Regarding the hydrocarbon source and CO 2 capture processes, fuel gas from boilers may be accompanied by so-called "annex gases" which could be co-injected in a geological storage. These gases, such as SOx, NOx, or oxygen for instance, are likely to interact with reservoir fluids and rocks and well materials (casing and cement) and could potentially affect the safety of the storage. However, there are currently only few data on the behaviour of such gas mixtures, as well as on their chemical reactivity, especially in the presence of water. One reason for this lack comes from the difficulty in handling because of their dangerousness and their chemical reactivity. Therefore, the purpose of the Gaz Annexes was to develop new experimental and analytical protocols in order to acquire new thermodynamic data on these annex gases, in fine for predicting the behaviour of a geological storage of CO 2 + co-injected gases in the short, medium and long terms. This paper presents Gaz Annexes concerning acquisition of PVT experimental and pseudo-experimental data to adjust and validate thermodynamic models for water / gas / salts mixtures as well as the possible influence of SO 2 and NO on the geological storage of CO 2. The Gaz Annexes s new insights for the establishment of recommendations concerning acceptable content of annex gases

    Surface gas geochemistry above the natural CO2 reservoir of Montmiral (Drôme, France), source tracking and gas exchange between the soil, biosphere and atmosphere

    Get PDF
    International audienceOne of the options considered to mitigate greenhouse gas concentrations in the atmosphere is underground storage of CO2. There is a strong need for enhancing and developing methods that would help throughout the duration life of such underground storage, to ensure the safety and able to monitor the evolution of the injected CO2 plume. Among these, geochemical methods can play an important role. Here, we describe results acquired under the research programme “Géocarbone-Monitoring”, partially funded by the French National Research Agency, on the Montmiral natural analogue in South-Eastern France. Other results obtained under the same research programme in the French Massif Central are reported elsewhere in this volume.Spot sampling methods allowing a great geographical coverage and continuous measurements on selected points were undertaken in 2006 and 2007, in order to determine soil gas concentrations and fluxes as well as carbon isotope ratio determinations. One important result is that without any evidence of deep CO2 leakage, both CO2 concentrations and fluxes appear to be higher than can be explained only by biological activities. Further investigations are thus needed to understand the gas evolution better throughout the year
    corecore