170 research outputs found

    Molecular fingerprinting of radiation resistant tumors: Can we apprehend and rehabilitate the suspects?

    Get PDF
    Radiation therapy continues to be one of the more popular treatment options for localized prostate cancer. One major obstacle to radiation therapy is that there is a limit to the amount of radiation that can be safely delivered to the target organ. Emerging evidence suggests that therapeutic agents targeting specific molecules might be combined with radiation therapy for more effective treatment of tumors. Recent studies suggest that modulation of these molecules by a variety of mechanisms (e.g., gene therapy, antisense oligonucleotides, small interfering RNA) may enhance the efficacy of radiation therapy by modifying the activity of key cell proliferation and survival pathways such as those controlled by Bcl-2, p53, Akt/PTEN and cyclooxygenase-2. In this article, we summarize the findings of recent investigations of radiosensitizing agents in the treatment of prostate cancer

    Proton irradiation of CVD diamond detectors for high-luminosity experiments at the LHC

    No full text
    CVD diamond shows promising properties for use as a position sensitive detector for experiments in the highest radiation areas at the Large Hadron Collider. In order to study the radiation hardn ess of diamond we exposed CVD diamond detector samples to 24~GeV/cc and 500~MeV protons up to a fluence of 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. We measured the charge collection distance, the ave rage distance electron hole pairs move apart in an external electric field, and leakage currents before, during, and after irradiation. The charge collection distance remains unchanged up to 1 times1015 p/cm21\ times 10^{15}~p/{\rm cm^2} and decreases by \approx40~\% at 5×1015 p/cm25\times 10^{15}~p/{\rm cm^2}. Leakage currents of diamond samples were below 1~pA before and after irradiation. The particle indu ced currents during irradiation correlate well with the proton flux. In contrast to diamond, a silicon diode, which was irradiated for comparison, shows the known large increase in leakage curren t. We conclude that CVD diamond detectors are radiation hard to 24~GeV/cc and 500~MeV protons up to at least 1×1015 p/cm21\times 10^{15}~p/{\rm cm^2} without signal loss

    Development of CVD diamond radiation detectors

    Get PDF
    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, d=μEτd=\mu E \tau, the average distance electron-hole pairs move apart under the influence of an electric field, where μ\mu is the sum of carrier mo bilities, EE is the applied electric field, and τ\tau is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from \sim 75 μ\mum to over 200 μ\mu m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors were exposed to large fluences of pions, protons and neutrons to establish their radiation hardness properties. The results of these tests and their correlati on with the characterization studies are presented

    Performance of irradiated CVD diamond micro-strip sensors

    Get PDF
    CVD diamond detectors are of interest for charged particle detection and tracking due to their high radiation tolerance. In this article we present, for the first time, beam test results from recently manufactured CVD diamond strip detectors and their behavior under low doses of electrons from a β\beta-source and the performance before and after intense (>1015/cm2>10^{15}/{\rm cm^2}) proton- and pion-irradiations. We find that low dose irradiations increase the signal-to-noise ratio (pumping of the signal) and slightly deteriorate the spatial resolution. Intense irradiations with protons (2.2×1015 p/cm22.2\times 10^{15}~p/{\rm cm^2}) lowers the signal-to-noise ratio slightly. Intense irradiation with pions (2.9×1015 π/cm22.9\times 10^{15}~\pi/{\rm cm^2}) lowers the signal-to-noise ratio more. The spatial resolution of the diamond sensors improves after irradiations
    corecore