291 research outputs found

    A Measurement System for On-line Estimation of Weed Coverage

    Get PDF
    This paper describes two different solutions for the estimation of weed coverage. Both measuring systems discriminate the weed from the ground by means of the color difference between the weed and ground and can be used to on-line control tractor sprayers in order to reduce weedkiller use. The solutions differ with respect to the sensor type: one solution is based on a digital camera and a computer that analyzes the images and determines the weed amount, while the other simpler solution makes use of two photo detectors and an analog processing system. The camera-based solution provides an uncertainty of a few percentage, while the photo detector-based one, though extremely cheap, has an uncertainty of about 5% and suffers from changes in light conditions, which can alter the estimation

    Generalized mixed-mode S-parameters

    Get PDF
    This paper presents an innovative approach to extend the S-parameter definition to multiport networks having conventional single-ended and differential ports, as is the case for operational amplifiers, transformers and baluns. To give maximum generality to this technique, for example, allowing for complex -parameter reference impedances, the mathematical derivation will be carried out with the most general definition of the -parameters. The presented approach gives the same results already published for circuits with differential ports only when the required simplifications are applied

    Microwave Measurements Part I: Linear Measurements

    Get PDF
    An Overview of the most relevant issues concerning RF and microwave linear measurements is presented. Vector Network Analyzer foremost used instrumentation for this kind of measures is describe

    Microwave Measurements. Part II - Nonlinear Measurements

    Get PDF
    This paper addresses the problems in microwave non-linear measurements. It discusses techniques to synthesize loads, the most used non-linear measurement techniques, and harmonic load-pulling. An experimental setup for characterizing power amplifiers must be able to measure the complex spectrum of the waves at the amplifier ports as a function of frequency, input power, and source and load termination at the fundamental and harmonic frequencies. The vector network analyzer (VNA) is the core instrument used in the non-linear characterization scenario. The basic idea is to keep the operations of VNA/mixers linear, diverting to them only a small portion of the signal present at the device under test (DUT) ports, therefore keeping unaltered the VNA capabilities already exhibited for small signal measurements

    Testing devices under different source impedances: a novel technique for on-line measurement of source and device reflection coefficients

    Get PDF
    This paper describes a new approach for fast and accurate determination of the source reflection coefficient in microwave source-pull measurements. To the authors' knowledge, this is the only technique that allows the simultaneous measurement of the source and the DUT gammas. A traditional vector network analyzer is used as a three-channel receiver. The calibration procedure is based on a new reflectometer model that extends the traditional error box concept. Experimental results are presented and compared to data obtained with traditional techniques

    On the Lower Bound to the Input and Output Mismatch of Conditionally Stable Linear Two-Ports

    Get PDF
    In the design of amplifier stages based on unconditionally stable linear active two-ports, the amplifier gain can be maximized through simultaneous conjugate matching with passive loads at the input and output ports. Conversely, the optimization of linear amplifiers based on conditionally stable active devices requires a trade-off between gain, stability margin, input/output port mismatch and (for low-noise amplifiers) noise figure. Exploiting potentially in-band unstable devices can be advantageous in the design of open-loop low-noise amplifiers, since the in-band stabilization with input resistors is well known to negatively affect the amplifier minimum noise figure. Within this framework, the article derives a lower bound to the input and output mismatch of non unconditionally stable linear two-ports. The minumum mismatch is shown to only depend, in a simple way, on the stability factor K and on the assumed mismatch ratio between the two ports. The minimum mismatch condition can be implemented by cascading the active, potentially in-band unstable two-port with two (input and output) reactive matching sections. The application of the theory to the design of low-noise amplifier open-loop stages based on conditionally stable active devices is discussed through CAD examples

    Physics-based large-signal sensitivity analysis of microwave circuits using technological parametric sensitivity from multidimensional semiconductor device models

    Get PDF
    The authors present an efficient approach to evaluate the large-signal (LS) parametric sensitivity of active semiconductor devices under quasi-periodic operation through accurate, multidimensional physics-based models. The proposed technique exploits efficient intermediate mathematical models to perform the link between physics-based analysis and circuit-oriented simulations, and only requires the evaluation of dc and ac small-signal (dc charge) sensitivities under general quasi-static conditions. To illustrate the technique, the authors discuss examples of sensitivity evaluation, statistical analysis, and doping profile optimization of an implanted MESFET to minimize intermodulation which makes use of LS parametric sensitivities under two-tone excitatio
    • 

    corecore