15 research outputs found

    A novel small molecule TLR4 antagonist (IAXO-102) negatively regulates non-hematopoietic toll like receptor 4 signalling and inhibits aortic aneurysms development

    Get PDF
    Objectives: The toll-like receptors (TLRs), including TLR4, have been shown to play a crucial role in vascular inflammatory diseases, such as atherosclerosis and aneurysm. The main goal of this study was to determine the potential of IAXO-102 (Innaxon, Tewkesbury), a novel small molecule TLR4 antagonist, to modulate non-hematopoietic TLR4 proinflammatory signalling and inhibit experimental abdominal aortic aneurysm (AAA) development. Methods: Human umbilical vein endothelial cells (HUVEC) and Angiotensin II-induced experimental AAA development were our in vitro and in vivo models respectively. Western blotting, antibody array and ELISA approaches were used to explore the effect of IAXO-102 on TLR4 functional activity on two levels: modulation of TLR4-induced mitogen activated protein kinases (MAPK) and p65 NF-kB phosphorylation and expression of TLR4 dependent proinflammatory proteins. Results: Following activation of TLR4, in vitro/in vivo data revealed that IAXO-102 inhibited MAPK and p65 NF-kB phosphorylation associated with down regulation of the expression of TLR4 and TLR4 dependent proinflammatory proteins. Furthermore, IAXO-102 decreased Angiotensin II-induced aortic expansion, rupture and incidence of AAA. Conclusions: These results demonstrate the ability of IAXO-102 to negatively regulate TLR4 signalling and to inhibit experimental AAA development, suggesting the potential therapeutic use of this TLR4 antagonist for pharmacological intervention of AAA

    Specific inhibition of c-Jun N-terminal kinase delays preterm labour and reduces mortality

    Get PDF
    Preterm labour (PTL) is commonly associated with infection and/or inflammation. Lipopolysaccharide (LPS) from different bacteria can be used to independently or mutually activate Jun N-terminal kinase (JNK)/AP1- or NF-kB-driven inflammatory pathways that lead to PTL. Previous studies using Salmonella abortus LPS, which activates both JNK/AP-1 and NF-kB, showed that selective inhibition of NF-kB delays labour and improves pup outcome. Where labour is induced using Escherichia coli LPS (O111), which upregulates JNK/AP-1 but not NF-kB, inhibition of JNK/AP-1 activation also delays labour. In this study, to determine the potential role of JNK as a therapeutic target in PTL, we investigated the specific contribution of JNK signalling to S. Abortus LPS-induced PTL in mice. Intrauterine administration of S. Abortus LPS to pregnant mice resulted in the activation of JNK in the maternal uterus and fetal brain, upregulation of pro-inflammatory proteins COX-2, CXCL1, and CCL2, phosphorylation of cPLA2 in myometrium, and induction of PTL. Specific inhibition of JNK by co-administration of specific D-JNK inhibitory peptide (D-JNKI) delayed LPS-induced preterm delivery and reduced fetal mortality. This is associated with inhibition of myometrial cPLA2 phosphorylation and proinflammatory proteins synthesis. In addition, we report that D-JNKI inhibits the activation of JNK/JNK3 and caspase-3, which are important mediators of neural cell death in the neonatal brain. Our data demonstrate that specific inhibition of TLR4-activated JNK signalling pathways has potential as a therapeutic approach in the management of infection/inflammation-associated PTL and prevention of the associated detrimental effects to the neonatal brain

    Synthetic glycolipid-based TLR4 antagonists negatively regulate TRIF-dependent TLR4 signalling in human macrophages

    Get PDF
    TLRs, including TLR4, play a crucial role in inflammatory-based diseases, and TLR4 has been identified as a therapeutic target for pharmacological intervention. In previous studies, we investigated the potential of FP7, a novel synthetic glycolipid active as a TLR4 antagonist, to inhibit haematopoietic and non-haematopoietic MyD88-dependent TLR4 pro-inflammatory signalling. The main aim of this study was to investigate the action of FP7 and its derivative FP12 on MyD88-independent TLR4 signalling in THP-1 derived macrophages. Western blotting, Ab array and ELISA approaches were used to explore the effect of FP7 and FP12 on TRIF-dependent TLR4 functional activity in response to LPS and other endogenous TLR4 ligands in THP-1 macrophages. A different kinetic in the inhibition of endotoxin-driven TBK1, IRF3 and STAT1 phosphorylation was observed using different LPS chemotypes. Following activation of TLR4 by LPS, data revealed that FP7 and FP12 inhibited TBK1, IRF3 and STAT1 phosphorylation which was associated with down-regulation IFN-β and IP-10. Specific blockage of the IFN type one receptor showed that these novel molecules inhibited TRIF-dependent TLR4 signalling via IFN-β pathways. These results add novel information on the mechanism of action of monosaccharide FP derivatives. The inhibition of the TRIF-dependent pathway in human macrophages suggests potential therapeutic uses for these novel TLR4 antagonists in pharmacological interventions on inflammatory diseases

    Increased expression of Lamin A/C correlates with regions of high wall-stress in abdominal aortic aneurysms.

    Get PDF
    Background: Since aortic diameter is the most significant risk factor for rupture, we sought to identify stress-dependent changes in gene expression to illuminate novel molecular processes in aneurysm rupture. Materials and Methods: We constructed finite element maps of abdominal computerized tomography scans (CTs) of seven abdominal aortic aneurysm (AAA) patients to map wall stress. Paired biopsies from high- and low-stress areas were collected at surgery using vascular landmarks as coordinates. Differential gene expression was evaluated by Illumina Array analysis, using the whole genome DNA-mediated, annealing, selection, extension, and ligation (DASL) gene chip (n = 3 paired samples). Results: The sole significant candidate from this analysis, Lamin A/C, was validated at the protein level, using western blotting. Lamin A/C expression in the inferior mesenteric vein (IMV) of AAA patients was compared to a control group and in aortic smooth muscle cells in culture in response to physiological pulsatile stretch. Areas of high wall stress (n = 7) correlate to those regions which have the thinnest walls [778 µm (585–1120 µm)] in comparison to areas of lowest wall stress [1620 µm (962–2919 µm)]. Induced expression of Lamin A/C correlated with areas of high wall stress from AAAs but was not significantly induced in the IMV from AAA patients compared to controls (n = 16). Stress-induced expression of Lamin A/C was mimicked by exposing aortic smooth muscle cells to prolonged pulsatile stretch. Conclusion: Lamin A/C protein is specifically increased in areas of high wall stress in AAA from patients, but is not increased on other vascular beds of aneurysm patients, suggesting that its elevation may be a compensatory response to the pathobiology leading to aneurysms

    Synthetic Glycolipids as Molecular Vaccine Adjuvants: Mechanism of Action in Human Cells and In Vivo Activity

    Get PDF
    Modern adjuvants for vaccine formulations are immunostimulating agents whose action is based on the activation of pattern recognition receptors (PRRs) by well-defined ligands to boost innate and adaptive immune responses. Monophosphoryl lipid A (MPLA), a detoxified analogue of lipid A, is a clinically approved adjuvant that stimulates toll-like receptor 4 (TLR4). The synthesis of MPLA poses manufacturing and quality assessment challenges. Bridging this gap, we report here the development and preclinical testing of chemically simplified TLR4 agonists that could sustainably be produced in high purity and on a large scale. Underpinned by computational and biological experiments, we show that synthetic monosaccharide-based molecules (FP compounds) bind to the TLR4/MD-2 dimer with submicromolar affinities stabilizing the active receptor conformation. This results in the activation of MyD88- and TRIF-dependent TLR4 signaling and the NLRP3 inflammasome. FP compounds lack in vivo toxicity and exhibit adjuvant activity by stimulating antibody responses with a potency comparable to MPLA

    Differential role of apoptosis and autophagy associated with anticancer effect of lupulone (hop β-acid) derivatives on prostate cancer cells

    No full text
    Lupulone, a β-acid derived from hop extracts has been shown to exhibit cytotoxic activity against cancer cells. In this study we investigated the functional role of different modes of cell death that mediate anticancer effect of lupulone derivatives in prostate cancer cells. ELISA, immunoblotting and siRNA approaches were utilised to study cell death, expression of proteins of interest and their functional activities. We found that the anticancer effect of lupulone derivatives on prostate cancer cells is associated with induction of apoptosis and autophagy as determined by increases of DNA fragmentation and LC3I/ LC3II conversion respectively. Inhibition of apoptosis using a pan-caspase inhibitor resulted in increased levels of autophagy. Following screening of proteins associated with autophagy we found that Atg4β expression was increased in prostate cancer cells after treatment with lupulone. Transfection of cells with siRNA against Atg4β resulted in increased levels of apoptosis in prostate cancer cells. Treatment of prostate cancer cells with lupulone derivatives initiated two modes of cell death: apoptosis as a killing pathway and autophagy as a protection against cell death. Further studies are required to investigate the regulation of Atg4β activity in lupulone derivatives-induced negative crosstalk between apoptosis and autophagy

    Structure-activity relationship (SAR) in monosaccharide-based Toll-like receptor 4 (TLR4) antagonists

    Get PDF
    The structure-activity relationship was investigated in a series of synthetic TLR4 antagonists formed by a glucosamine core linked to two phosphate esters and two linear carbon chains. Molecular modeling showed that the compounds with 10, 12 and 14 carbons chains are associated to higher stabilization of the MD-2/TLR4 antagonist conformation than in the case of the C16 variant. Binding experiments with human MD-2 showed that the C12 and C14 variants have higher affinity than C10, while the C16 variant did not interact with the protein. The molecules, with the exception of the C16 variant, inhibited the LPS-stimulated TLR4 signal in human and murine cells and the antagonist potency mirrored the MD-2 affinity calculated from in vitro binding experiments. FT-IR, NMR, and SAXS measurements suggested that the aggregation state in aqueous solution depends on fatty acid chains lengths and that this property can influence TLR4 activity in this series of compounds
    corecore