17 research outputs found

    Contribution of the carbohydrate-binding ability of Vatairea guianensis lectin to induce edematogenic activity

    Get PDF
    Vatairea guianensis lectin (VGL), Dalbergiae tribe, is a N-acetyl-galactosamine (GalNAc)/Galactose (Gal) lectin previously purified and characterized. In this work, we report its structural features, obtained from bioinformatics tools, and its inflammatory effect, obtained from a rat paw edema model. The VGL model was obtained by homology with the lectin of Vatairea macrocarpa (VML) as template, and we used it to demonstrate the common characteristics of legume lectins, such as the jellyroll motif and presence of a metal-binding site in the vicinity of the carbohydrate-recognition domain (CRD). Protein-ligand docking revealed favorable interactions with N-acetyl-D-galactosamine, D-galactose and related sugars as well as several biologically relevant N- and O-glycans. In vivo testing of paw edema revealed that VGL induces edematogenic effect involving prostaglandins, interleukins and VGL CRD. Taken together, these data corroborate with previous reports showing that VGL interacts with N- and/or O-glycans of molecular targets, particularly in those presenting galactosides in their structure, contributing to the lectin inflammatory effect. © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM

    CRLI induces vascular smooth muscle relaxation and suggests a dual mechanism of eNOS activation by legume lectins via muscarinic receptors and shear stress

    No full text
    Lectins are proteins able to recognize carbohydrates, without modifying their structure, via the carbohydrate-recognition domain (CRD). Here, the three-dimensional structure of the mannose-binding lectin isolated from Cymbosema roseum (CRLI) was determined with X-man molecule modeled into the carbohydrate recognition domain. CRLI relaxant activity in thoracic rat aorta was also investigated, and based on the results, a molecular docking of CRLI with heparan sulfate was performed to investigate the possible interaction with mechanoreceptors involved in vasorelaxation. CRLI (IC50 = 12.4 μg mL-1) elicited vasorelaxant response (96%) in endothelialized rat aorta contracted with phenylephrine. Endothelium-derived relaxant factors, extracellular calcium (Ca2+e) and muscarinic receptors were also evaluated as putative participants in the CRLI relaxant effect. CRLI relaxant effect was blocked by L-NAME, a nonselective inhibitor of nitric oxide synthase (NOS), and partially inhibited in a calcium-free solution (0Ca) and by atropine, but it remained unchanged in the presence of indomethacin and TEA. In summary, our data suggest interaction between CRLI and muscarinic receptors located in vascular endothelial cells leading to NOS activation triggered by a mechanism that involves Ca2+e along with the ability of CRLI to interact with heparan sulfate, a highly rated mechanoreceptor involved in eNOS activation. © 2014 Published by Elsevier Inc

    Crystal structure of a pro-inflammatory lectin from the seeds of Dioclea wilsonii Standl

    Get PDF
    AbstractThe crystal structure and pro-inflammatory property of a lectin from the seeds of Dioclea wilsonii (DwL) were analyzed to gain a better understanding of structure/function relationships of Diocleinae lectins. Following crystallization and structural determination by standard molecular replacement techniques, DwL was found to be a tetramer based on PISA analysis, and composed by two metal-binding sites per monomer and loops which are involved in molecular oligomerization. DwL presents 96% and 99% identity with two other previously described lectins of Dioclea rostrata (DRL) and Dioclea grandiflora (DGL). DwL differs structurally from DVL and DRL with regard to the conformation of the carbohydrate recognition domain and related biological activities. The structural analysis of DwL in comparison to other Diocleinae lectins can be related to the differences in the dose-dependent pro-inflammatory effect elicited in Wistar rats, probably via specific interactions with mast cells complex carbohydrate, resulting in significant paw edema. DwL appears to be involved in positive modulation of mast cell degranulation via recognition of surface carbohydrates. Since this recognition is dependent on site volume and CRD configuration, edematogenesis mediated by resident cells varies in potency and efficacy among different Diocleinae lectins
    corecore