33 research outputs found

    Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents - the AWARE Study

    Get PDF
    To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300~m away from WWTPs; N = 431) and distant residents (living ≥ 1000~m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage

    Gut Microbiota, Host Organism, and Diet Trialogue in Diabetes and Obesity

    Get PDF
    The gastrointestinal tract with its microbiota is a complex, open, and integrated ecosystem with a high environmental exposure. It is widely accepted that the healthy gut microbiotais essential for host homeostasis and immunostasis, harboring an enormous number and variety of microorganisms and genes tailored by hundreds of exogenous and intrinsic host factors. The occurrence of dysbiosis may contribute to host vulnerability and progression to a large spectrum of infectious and non-communicable diseases, including diabetes and obesity, two metabolic disorders that are showing an endemic trend nowadays. There is an urgent need to develop efficient strategies to prevent and treat metabolic disorders such as diabetes and obesity which are often associated with serious complications. In this paper, we give an overview on the implications of gut microbiota in diabesity, with a focus on the triangle gut microbiota—diet-host metabolism and on the way to manipulate the gut microbial ecosystem toward achieving novel diagnosis and predictive biomarkers with the final goal of reestablishing the healthy metabolic condition. The current research data regarding the precision/personalized nutrition suggest that dietary interventions, including administration of pre-, pro-, and syn-biotics, as well as antibiotic treatment should be individually tailored to prevent chronic diseases based on the genetic background, food and beverage consumption, nutrient intake, microbiome, metabolome, and other omic profiles

    NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA

    Get PDF
    Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host–pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H(2)O(2)), but its consequences on extracellular pathogens are unknown. Here we show that H(2)O(2), released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches

    Corrigendum to "European contribution to the study of ROS:A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)" [Redox Biol. 13 (2017) 94-162]

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed

    Cj1411c Encodes for a Cytochrome P450 Involved in Campylobacter jejuni 81-176 Pathogenicity

    Get PDF
    Cytochrome P450s are b-heme-containing enzymes that are able to introduce oxygen atoms into a wide variety of organic substrates. They are extremely widespread in nature having diverse functions at both biochemical and physiological level. The genome of C. jejuni 81-176 encodes a single cytochrome P450 (Cj1411c) that has no close homologues. Cj1411c is unusual in its genomic location within a cluster involved in the biosynthesis of outer surface structures. Here we show that E. coli expressed and affinity-purified C. jejuni cytochrome P450 is lipophilic, containing one equivalent Cys-ligated heme. Immunoblotting confirmed the association of cytochrome P450 with membrane fractions. A Cj1411c deletion mutant had significantly reduced ability to infect human cells and was less able to survive following exposure to human serum when compared to the wild type strain. Phenotypically following staining with Alcian blue, we show that a Cj1411c deletion mutant produces significantly less capsular polysaccharide. This study describes the first known membrane-bound bacterial cytochrome P450 and its involvement in Campylobacter virulence
    corecore