165 research outputs found

    The role of the single interchains disulfide bond in tetanus and botulinum neurotoxins and the development of antitetanus and antibotulism drugs

    Get PDF
    A large number of bacterial toxins consist of active and cell binding protomers linked by an interchain disulfide bridge. The largest family of such disulfide-bridged exotoxins is that of the clostridial neurotoxins that consist of two chains and comprise the tetanus neurotoxins causing tetanus and the botulinum neurotoxins causing botulism. Reduction of the interchain disulfide abolishes toxicity, and we discuss the experiments that revealed the role of this structural element in neuronal intoxication. The redox couple thioredoxin reductase-thioredoxin (TrxR-Trx) was identified as the responsible for reduction of this disulfide occurring on the cytosolic surface of synaptic vesicles. We then discuss the very relevant finding that drugs that inhibit TrxR-Trx also prevent botulism. On this basis, we propose that ebselen and PX-12, two TrxR-Trx specific drugs previously used in clinical trials in humans, satisfy all the requirements for clinical tests aiming at evaluating their capacity to effectively counteract human and animal botulism arising from intestinal toxaemias such as infant botulism

    Evolutionary Implications of Environmental Toxicant Exposure

    Get PDF
    Homo sapiens have been exposed to various toxins and harmful compounds that change according to various phases of human evolution. Population genetics studies showed that such exposures lead to adaptive genetic changes; while observing present exposures to different toxicants, the first molecular mechanism that confers plasticity is epigenetic remodeling and, in particular, DNA methylation variation, a molecular mechanism proposed for medium-term adaptation. A large amount of scientific literature from clinical and medical studies revealed the high impact of such exposure on human biology; thus, in this review, we examine and infer the impact that different environmental toxicants may have in shaping human evolution. We first describe how environmental toxicants shape natural human variation in terms of genetic and epigenetic diversity, and then we describe how DNA methylation may influence mutation rate and, thus, genetic variability. We describe the impact of these substances on biological fitness in terms of reproduction and survival, and in conclusion, we focus on their effect on brain evolution and physiology

    Push-push X band GaInP/GaAs VCO with a fully monolithic microstrip resonator

    Get PDF
    In this paper the design of a VCO using GaInP/GaAs HBT technology is presented. The VCO is designed to be a part of a PDH point to point radio system. To achieve low phase noise performances GaInP/GaAs HBT technology and push-push topology have been chosen. The MMIC includes predistorters to emphasize the second harmonic, f/sub 0//2 prescalers for PLL locking and buffer amplifiers. A fully monolithic microstrip resonator is coupled with integrated varactors to achieve the specified tuning bandwidth. Phase noise, bandwidth and power measurements will also be presente

    A CXCR4 receptor agonist strongly stimulates axonal regeneration after damage

    Get PDF
    Objective: To test whether the signaling axis CXCL12\u3b1-CXCR4 is activated upon crush/cut of the sciatic nerve and to test the activity of NUCC-390, a new CXCR4 agonist, in promoting nerve recovery from damage. Methods: The sciatic nerve was either crushed or cut. Expression and localization of CXCL12\u3b1 and CXCR4 were evaluated by imaging with specific antibodies. Their functional involvement in nerve regeneration was determined by antibody-neutralization of CXCL12\u3b1, and by the CXCR4 specific antagonist AMD3100, using as quantitative read-out the compound muscle action potential (CMAP). NUCC-390 activity on nerve regeneration was determined by imaging and CMAP recordings. Results: CXCR4 is expressed at the injury site within the axonal compartment, whilst its ligand CXCL12\u3b1 is expressed in Schwann cells. The CXCL12\u3b1-CXCR4 axis is involved in the recovery of neurotransmission of the injured nerve. More importantly, the small molecule NUCC-390 is a strong promoter of the functional and anatomical recovery of the nerve, by acting very similarly to CXCL12\u3b1. This pharmacological action is due to the capability of NUCC-390 to foster elongation of motor neuron axons both in vitro and in vivo. Interpretation: Imaging and electrophysiological data provide novel and compelling evidence that the CXCL12\u3b1-CXCR4 axis is involved in sciatic nerve repair after crush/cut. This makes NUCC-390 a strong candidate molecule to stimulate nerve repair by promoting axonal elongation. We propose this molecule to be tested in other models of neuronal damage, to lay the basis for clinical trials on the efficacy of NUCC-390 in peripheral nerve repair in humans

    No association between frailty index and epigenetic clocks in Italian semi-supercentenarians

    Get PDF
    Centenarians experience successful ageing, although they still present high heterogeneity in their health status. The frailty index is a biomarker of biological age, able to capture such heterogeneity, even at extreme old age. At the same time, other biomarkers (e.g., epigenetic clocks) may be informative the biological age of the individual and potentially describe the ageing status in centenarians. In this article, we explore the relationship between epigenetic clocks and frailty index in a cohort of Italian centenarians. No association was reported, suggesting that these two approaches may describe different aspects of the same ageing process

    Transcriptomic analysis reveals an association of FCGBP with Parkinson’s disease

    Get PDF
    Transcriptomics in Parkinson’s disease (PD) offers new insights into the molecular mechanism of PD pathogenesis. Several pathways, such as inflammation and protein degradation, have been identified by differential gene expression analysis. Our aim was to identify gene expression differences underlying the disease etiology and the discovery of pre-symptomatic risk biomarkers for PD from a multicenter study in the context of the PROPAG-AGEING project. We performed RNA sequencing from 47 patients with de novo PD, 10 centenarians, and 65 healthy controls. Using identified differentially expressed genes, functional annotations were assigned using gene ontology to unveil significant enriched biological processes. The expression of 16 selected genes was validated using OpenArray® assays and samples from independent cohorts of 201 patients with advanced PD, 340 healthy siblings of PD patients, and 177 healthy controls. Differential gene expression analysis identified higher FCGBP expression in patients with de novo PD compared with healthy controls and compared with centenarians. Furthermore, FCGBP showed no differences in terms of population origin or aging process. The increased FCGBP expression was validated in patients with advanced PD and their siblings. Thus, we provided evidence for an upregulation of FCGBP mRNA levels not only in patients with PD but also in individuals at putative higher risk of PD, suggesting that it could be important in gut–brain PD interaction, mediating the connection between microbiota and intestinal inflammatory processes, as well as neuroinflammation and neurodegeneration

    Genome sequence of the fish brain bacterium Clostridium tarantellae

    Get PDF
    Eubacterium tarantellae was originally cultivated from the brain of fish affected by twirling movements. Here, we present the draft genome sequence of E. tarantellae DSM 3997, which consists of 3,982,316 bp. Most protein-coding genes in this strain are similar to genes of Clostridium bacteria, supporting the renaming of E. tarantellae as Clostridium tarantellae

    Erythropoietin (EPO) haplotype associated with all-cause mortality in a cohort of Italian patients with Type-2 Diabetes

    Get PDF
    Type-2 Diabetes (T2D), diabetic complications, and their clinical risk factors harbor a substantial genetic component but the genetic factors contributing to overall diabetes mortality remain unknown. Here, we examined the association between genetic variants at 21 T2D-susceptibility loci and all-cause mortality in an elderly cohort of 542 Italian diabetic patients who were followed for an average of 12.08 years. Univariate Cox regression analyses detected age, waist-to-hip ratio (WHR), glycosylated haemoglobin (HbA1c), diabetes duration, retinopathy, nephropathy, chronic kidney disease (CKD), and anaemia as predictors of all-cause mortality. When Cox proportional hazards multivariate models adjusted for these factors were run, three erythropoietin (EPO) genetic variants in linkage disequilibrium (LD) with each other (rs1617640-T/G, rs507392-T/C and rs551238-A/C) were significantly (False Discovery Rate < 0.1) associated with mortality. Haplotype multivariate analysis revealed that patients carrying the G-C-C haplotype have an increased probability of survival, while an opposite effect was observed among subjects carrying the T-T-A haplotype. Our findings provide evidence that the EPO gene is an independent predictor of mortality in patients with T2D. Thus, understanding the mechanisms by which the genetic variability of EPO affects the mortality of T2D patients may provide potential targets for therapeutic interventions to improve the survival of these patients

    Exceptionally potent human monoclonal antibodies are effective for prophylaxis and therapy of tetanus in mice

    Get PDF
    Human monoclonal antibodies were used here to study the mechanism of neuron intoxication by tetanus neurotoxin and to evaluate them as a safe preventive and therapeutic substitute of hyperimmune sera for tetanus in mice. By screening memory B cells of immune donors, we selected two monoclonal antibodies specific for tetanus neurotoxin with exceptionally high neutralizing activities, which were extensively characterized both structurally and functionally. We found that these antibodies interfere with the binding and translocation of the neurotoxin into neurons by interacting with two epitopes, whose definition pinpoints crucial events in the cellular pathogenesis of tetanus. This information explains the unprecedented neutralization ability of these antibodies, which were found to be exceptionally potent in preventing experimental tetanus when injected in mice long before the neurotoxin. Moreover, their Fab derivatives neutralized tetanus neurotoxin in post-exposure experiments, suggesting their potential therapeutic use via intrathecal injection. As such, these human monoclonal antibodies, as well as their Fab derivatives, meet all requirements for being considered for prophylaxis and therapy of human tetanus and are ready for clinical trials
    • …
    corecore