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A B S T R A C T   

Centenarians experience successful ageing, although they still present high heterogeneity in their health status. 
The frailty index is a biomarker of biological age, able to capture such heterogeneity, even at extreme old age. At 
the same time, other biomarkers (e.g., epigenetic clocks) may be informative the biological age of the individual 
and potentially describe the ageing status in centenarians. In this article, we explore the relationship between 
epigenetic clocks and frailty index in a cohort of Italian centenarians. No association was reported, suggesting 
that these two approaches may describe different aspects of the same ageing process.   

The study of centenarians, that nowadays represent the fastest- 
growing group among older persons, is crucial for understanding the 
mechanisms that regulate ageing and age-related conditions. Cente
narians are characterized by notable heterogeneity in their health status 
(Evert et al., 2003), as a result of the intricate interplay between genetic 
background and life-long exposure to environmental stressors (Ostan 
et al., 2019; Salvioli et al., 2009). 

Recently, it has been demonstrated that this heterogeneity can be 
captured by the Frailty Index (FI) (Arosio et al., 2019). The FI estimates 
the biological ageing through a quantitative approach to the age-related 
accumulation of health deficits, allowing the discrimination of different 

degrees of frailty (Rockwood and Mitnitski, 2007). It has been shown 
that centenarians present a higher level and heterogeneity of the FI 
compared to persons aged 65–99 years (Arosio et al., 2019). Further
more, the FI predicts mortality and health conditions, as demonstrated 
in a large cohort of Chinese centenarians, suggesting that it can 
discriminate different degrees of frailty even at very advanced age 
(Arosio et al., 2019; Gu and Feng, 2015). 

Another approach to measure the individual’s biological age is rep
resented by the epigenetic clock, based on the DNA methylation (DNAm) 
levels found in sets of CpG sites across the genome (Horvath and Raj, 
2018; Jylhävä et al., 2017). Centenarians have an epigenetic age 
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younger than expected and a high variability in the predicted epigenetic 
age (Armstrong et al., 2017; Gutman et al., 2020; Horvath et al., 2015). 

Some studies have investigated the relationship between the FI and 
epigenetic clocks. Interestingly, two papers reported that the FI out
performs epigenetic clocks in predicting mortality (Kim et al., 2017; 
Zhang et al., 2018). At the same time, whereas Li et al. have observed 
only a weak association between FI and epigenetic age (Li et al., 2020), 
others have reported positive associations (Breitling et al., 2016; Gale 
et al., 2018). In this context, we decided to analyse the association be
tween the FI and epigenetic clocks in a cohort of well-characterized 
semi-supercentenarians (older than 105 years). 

A standardized, structured questionnaire was administered to all 
subjects referring to three Italian research centers (Milan, Bologna, and 
Cosenza) (Bucci et al., 2014). The FI was computed following the stan
dardization criteria described by Searle et al. (Searle et al., 2008), and 
calculated as the ratio between the number of health deficits presented 
by the individual and the total number of health deficits considered in a 
comprehensive evaluation (Arosio et al., 2020, 2019). Genome-wide 
DNAm was measured in peripheral blood mononuclear cells using the 
Infinium Human Methylation 450 BeadChip (Illumina). As previously 
described (Horvath et al., 2015) unsupervised hierarchical clustering on 
inter-array correlation was used to identify outliers, and accordingly 7 
centenarians samples were removed. DNAm data were uploaded in the 
freely available software available at: https://dnamage.genetics.ucla. 
edu/new (New Methylation Age Calculator, Advanced Analysis). The 
software returns a series of DNAm estimates, including: the multi-tissue 
Horvath’s clock (Horvath, 2013), Hannum’s clock, that is specific for 
blood (Hannum et al., 2013), the skin & blood clock, developed for 
studies on cell cultures (Horvath et al., 2018), the PhenoAge, that in
corporates composite clinical measures related to differences in lifespan 
and healthspan (Levine et al., 2018), and the GrimAge, based on the 
estimation of the plasma levels of 7 proteins (adrenomedullin, 
beta-2-microglobulin, cystatin-C, growth differentiation factor 15, 

leptin, plasminogen activator inhibitor 1, tissue Inhibitor Metal
loproteinases 1) and of smoking pack-years, an estimated parameters 
that is strongly associated with mortality (Lu et al., 2019). 

Statistical analyses were performed on 31 semi-supercentenarians 
for which both the FI and the DNAm data were available. The cohort 
had a mean age of 105.2 years (SD: 1.16; age range: 104− 109), and 
included 21 women and 10 men. The mean value of the FI was 0.49 (SD: 
0.08; range: 0.31− 0.65). As previously reported (Horvath et al., 2015), 
semi-supercentenarians were epigenetically younger than expected 
(Table 1). 

We focused our attention on the variables reported in Tables 2 and 3. 
First of all, we evaluated the association between each parameter rep
resenting the biological age of the individual (i.e., FI and DNAm esti
mates) with his/her chronological age, using robust regression. The 
statistical models were corrected for sex and recruitment center and p- 
values were adjusted for multiple testing with BH method (Table 2). 

Neither the FI nor the DNAm estimators were associated with age in 
centenarians. This result might be explained by the heterogeneous 
health status of the centenarians compressed within a narrow range of 
chronological age. 

Table 3 shows the association between DNAm estimators and FI, 
using robust linear regression and adjusting for chronological age, sex, 
and recruitment center. Also in this case, p-values were corrected for 
multiple testing (BH method). 

The FI was not associated with any DNAm age estimators nor with 
DNAm age acceleration values. These results differ from those reported 
by Breitling et al. and Gale et al. (Breitling et al., 2016; Gale et al., 2018). 
Compared to these studies, the limited size of our cohort could prevent 

Table 1 
Characteristics of the cohort.  

Age 

mean 
(yrs) 

105.2 

range 
(yrs) 104− 109 

SD 1.15 

FI 

mean 
(yrs) 

0.49 

range 
(yrs) 

0.31− 0.65 

SD 0.08 

DNAm age according to Horvath’s clock (DNAmAge) 

mean 
(yrs) 93.90 

range 
(yrs) 60.10− 110.01 

SD 8.88 

DNAm age according to Hannum’s clock 
(DNAmHannum) 

mean 
(yrs) 

93.98 

range 
(yrs) 58.64− 110.71 

SD 9.63 

DNAm age according to Skin&BloodClock 
(DNAmAgeSkinBloodClock) 

mean 
(yrs) 86.35 

range 
(yrs) 

61.34− 95.82 

SD 6.35 

DNAm age according to PhenoAge (DNAmPhenoAge) 

mean 
(yrs) 86.07 

range 
(yrs) 50.57− 105.14 

SD 10.58 

DNAm age according to GrimAge (DNAmGrimAge) 

mean 
(yrs) 

98.58 

range 
(yrs) 

87.61− 108.54 

SD 4.35  

Table 2 
Results of robust linear regression models (adjusted for sex and study site) 
reporting the association of the independent variables (individually considered 
in the analysis) and chronological age. β-values (β), standard error (SE), and BH- 
corrected p-value are reported.  

Independent Variables β ± SE BH-corrected 
p-value 

FI − 0.01 ± 0.01 1 
DNAm age according to Horvath’s clock 

(DNAmAge) 
0.41 ± 1.32 1 

DNAm age according to Hannum’s clock 
(DNAmHannum) 

− 1.1 ± 0.77 0.73 

DNAm age according to Skin&BloodClock 
(DNAmAgeSkinBloodClock) 

0.39 ± 0.91 1 

DNAm age according to PhenoAge 
(DNAmPhenoAge) 

0.85 ± 1.46 1 

DNAm age according to GrimAge 
(DNAmGrimAge) 

0.67 ± 0.69 1 

Difference between chronological age and 
DNAmAge 

− 0.59 ± 1.32 1 

Difference between chronological age and 
DNAmAgeHannum 

− 2.1 ± 0.77 0.27 

Difference between chronological age and 
DNAmAgeSkinBloodClock 

− 0.61 ± 0.91 1 

Difference between chronological age and 
DNAmPhenoAge 

− 0.15 ± 1.46 1 

Difference between chronological age and 
DNAmGrimAge 

− 0.33 ± 0.69 1 

Predicted levels of adrenomedullin 4.31 ± 3.31 0.82 
Predicted levels of beta-2-microglobulin 9166.57 ±

12422.54 
1 

Predicted levels of cystatin-C 2829.09 ±
4238.21 

1 

Predicted levels of growth differentiation factor 
15 

− 9.51 ± 17.81 1 

Predicted levels of leptin 544.49 ±
483.38 

0.97 

Predicted levels of plasminogen activator 
inhibitor 1 

736.54 ±
500.91 

0.73 

Predicted levels of tissue Inhibitor 
Metalloproteinases 1 

72.13 ±
107.02 

1 

Predicted telomere length 0 ± 0.04 1  
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us from finding significant associations. On the other hand, our results 
are in agreement with those by Li et al. (Li et al., 2020), suggesting that 
the FI and the epigenetic clocks describe different aspects of the ageing 
process (Li et al., 2020; McCrory et al., 2020). Indeed, while FI provides 
a multidimensional measure of clinical phenotypes relative to deficits 
measured in the clinical setting, epigenetic clocks provide an estimate of 
molecular changes that are not necessarily of clinical relevance. 
Therefore these markers estimate ageing from different points of view. 
Likely, the differences in the domains grasped by the two are even more 
pronounced in centenarians, whose phenotype is highly heterogeneous 
and for which the tools that are commonly used to evaluate ageing may 
not provide consistent results (e.g. Mini-Mental State Examination) 
(Arosio et al., 2017). 

In conclusion, our results indicate that currently available epigenetic 
clocks are not optimized to disentangle the heterogeneity that charac
terizes centenarians as assessed by a multidimensional clinical 
biomarker like FI. 
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