640 research outputs found

    Reduced-order particle-in-cell simulations of a high-power magnetically shielded Hall thruster

    Get PDF
    High-power magnetically shielded Hall thrusters have emerged in recent years to meet the needs of the next-generation on-orbit servicing and exploration missions. Even though a few such thrusters are currently undergoing their late-stage development and qualification campaigns, many unanswered questions yet exist concerning the behavior and evolution of the plasma in these large-size thrusters that feature an unconventional magnetic field topology. Noting the complex, multi-dimensional nature of plasma processes in Hall thrusters, high-fidelity particle-in-cell (PIC) simulations are optimal tools to study the intricate plasma behavior. Nonetheless, the significant computational cost of traditional multi-dimensional PIC schemes renders simulating the high-power thrusters without any physics-altering speed-up factors unfeasible. The novel reduced-order “quasi-2D” PIC scheme enables a significant reduction in the computational cost requirement of the PIC simulations. Thus, in this article, we demonstrate the applicability of the reduced-order PIC for a cost-efficient, self-consistent study of the physics in high-power Hall thrusters by performing simulations of a 20 kW-class magnetically shielded Hall thruster along the axial-azimuthal and radial-azimuthal coordinates. The axial-azimuthal quasi-2D simulations are performed for three operating conditions in a rather simplified representation of the thruster’s inherently 3D configuration. Nevertheless, we have resolved self-consistently an unprecedented 650 µs of the discharge evolution without any ad-hoc electron mobility model, capturing several breathing cycles and approximating the experimental performance parameters with an accuracy of 70 to 80 % across the operating conditions. The radial-azimuthal simulations, carried out at three cross-sections corresponding to different axial locations within the discharge channel, have casted further light on the evolution of the azimuthal instabilities and the resulting variations in the electrons’ cross-field mobility and the plasma-wall interactions. Particularly, we observed the development of a long-wavelength, relatively low-frequency wave mode near the exit plane of the thruster’s channel that induces a notable electron transport and a significant ion heating

    The EEE Project

    Get PDF
    The new experiment ``Extreme Energy Events'' (EEE) to detect extensive air showers through muon detection is starting in Italy. The use of particle detectors based on Multigap Resistive Plate Chambers (MRPC) will allow to determine with a very high accuracy the direction of the axis of cosmic ray showers initiated by primaries of ultra-high energy, together with a high temporal resolution. The installation of many of such 'telescopes' in numerous High Schools scattered all over the Italian territory will also allow to investigate coincidences between multiple primaries producing distant showers. Here we present the experimental apparatus and its tasks.Comment: 4 pages, 29th ICRC 2005, Pune, Indi

    On the muon neutrino mass

    Get PDF
    During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays into a mu+ and subsequently the mu+ decays into a positron. At the first decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors contributing to the square value of the neutrino mass limit.Comment: 18 pages, 5 eps figure

    Resonant behaviour in double charge exchange reaction of \pi^+ mesons on the nuclear photoemulsion

    Full text link
    The invariant mass spectra of the ppπpp\pi^- and pppp systems produced in the double charge exchange (DCX) of positively charged pions on photoemulsion are analysed. A pronounced peak is observed in the ppπpp\pi^- invariant mass spectrum, while the MppM_{pp} spectrum exhibits a strong Migdal-Watson effect of the proton-proton final state interaction. These findings are in favor of the NNNN-decoupled NNπNN\pi pseudoscalar resonance with T=0 called dd'.Comment: 13 pages, 5 figures, revised versio

    K^- Meson Production in the Proton-Proton Reaction at 3.67 GeV/c

    Full text link
    The total cross section of the reaction ppppK+Kpp\to ppK^+K^- has been determined for proton--proton reactions with pbeam=3.67GeV/cp_{beam}=3.67 GeV/c. This represents the first cross section measurement of the ppppKK+pp \to ppK^-K^+ channel near threshold, and is equivalent to the inclusive ppppKXpp\to ppK^-X cross section at this beam momentum. The cross section determined at this beam momentum is about a factor 20 lower than that for inclusive ppppK+Xpp\to ppK^+X meson production at the same CM energy above the corresponding threshold. This large difference in the K+K^+ and KK^- meson inclusive production cross sections in proton-proton reactions is in strong contrast to cross sections measured in sub-threshold heavy ion collisions, which are similar in magnitude at the same energy per nucleon below the respective thresholds.Comment: 12 pages, 3 figures Phys. Lett. B in prin

    Production of η\eta\prime Mesons in the ppppηpp \to pp\eta\prime Reaction at 3.67 GeV/c

    Full text link
    The ratio of the total exclusive production cross sections for η\eta\prime and η\eta mesons has been measured in the pppp reaction at pbeam=3.67p_{beam}=3.67 GeV/c. The observed η/η\eta\prime/\eta ratio is (0.83±0.110.18+0.23)×102(0.83\pm{0.11}^{+0.23}_{-0.18})\times 10^{-2} from which the exclusive η\eta\prime meson production cross section is determined to be (1.12±0.150.31+0.42)μb(1.12\pm{0.15}^{+0.42}_{-0.31})\mu b. Differential cross section distributions have been measured. Their shape is consistent with isotropic η\eta\prime meson production.Comment: 14 pages, 5 figures, accepted by Phys.Lett.

    Spin physics with antiprotons

    Full text link
    New possibilities arising from the availability at GSI of antiproton beams, possibly polarised, are discussed. The investigation of the nucleon structure can be boosted by accessing in Drell-Yan processes experimental asymmetries related to cross-sections in which the parton distribution functions (PDF) only appear, without any contribution from fragmentation functions; such processes are not affected by the chiral suppression of the transversity function h1(x)h_1(x). Spin asymmetries in hyperon production and Single Spin Asymmetries are discussed as well, together with further items like electric and magnetic nucleonic form factors and open charm production. Counting rates estimations are provided for each physical case. The sketch of a possible experimental apparatus is proposed.Comment: Presented for the proceedings of ASI "Spin and Symmetry", Prague, July 5-10, 2004, to be published in Czech. J. Phys. 55 (2005

    The Extreme Energy Events HECR array: status and perspectives

    Full text link
    The Extreme Energy Events Project is a synchronous sparse array of 52 tracking detectors for studying High Energy Cosmic Rays (HECR) and Cosmic Rays-related phenomena. The observatory is also meant to address Long Distance Correlation (LDC) phenomena: the network is deployed over a broad area covering 10 degrees in latitude and 11 in longitude. An overview of a set of preliminary results is given, extending from the study of local muon flux dependance on solar activity to the investigation of the upward-going component of muon flux traversing the EEE stations; from the search for anisotropies at the sub-TeV scale to the hints for observations of km-scale Extensive Air Shower (EAS).Comment: XXV ECRS 2016 Proceedings - eConf C16-09-04.
    corecore