20 research outputs found

    Autoantibodies against type I IFNs in patients with life-threatening COVID-19

    Get PDF
    Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-w (IFN-w) (13 patients), against the 13 types of IFN-a (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    Capteur de suivi de joint et de controle du cordon de soudure

    No full text
    SIGLECNRS-CDST / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Left ventricular transmural gradient in mitochondrial respiration is associated with increased sub-endocardium nitric oxide and reactive oxygen species productions

    No full text
    Objective: Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined.Since nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient.Methods: Maximal oxidative capacity (VMax) and relative contributions of the respiratory chain complexes II, III, IV (VSucc) and IV (VTMPD), mitochondrial content (citrate synthase activity), coupling, NO (electron paramagnetic resonance) and reactive oxygen species (ROS) production (H2O2 and dihydroethidium (DHE) staining) were determined in rat sub-endocardium (Endo) and sub-epicardium (Epi). Further, the effect of a direct NO donor (MAHMA NONOate) on maximal mitochondrial respiratory rates (Vmax) was determined.Results: Mitochondrial respiratory chain activities were reduced in the Endo compared with the Epi (-16.92%; P=0.04 for Vmax and -18.73%; P=0.02, for Vsucc, respectively). NO production was 2-fold higher in the Endo compared with the Epi (P=0.002) and interestingly, increasing NO concentration reduced Vmax.Mitochondrial H2O2 and LV ROS productions were significantly increased in Endo compared to Epi, citrate synthase activity and mitochondrial coupling being similar in the two layers.Conclusions: LV mitochondrial respiration transmural gradient is likely related to NO and possibly ROS increased production in the sub-endocardium

    Contralateral leg as a control during skeletal muscle ischemia-reperfusion

    No full text
    Recent data demonstrated that hind limb ischemia induces skeletal muscle mitochondrial dysfunctions. Improvement of such metabolic myopathy improves patient's symptomatology, supporting the development of experimental models focused on mitochondrial function analysis. However, although the nonischemic contralateral leg is often used as a control during unilateral leg ischemia, whether it might be useful when assessing ischemia-induced mitochondrial dysfunction remains to be investigated.; Both ischemic (IR) and nonischemic contralateral legs (CTL) of rats (n=13) submitted to 5 h ischemia induced by a rubber band tourniquet applied on the root of the hind limb were studied and compared to that of sham-operated animals (SHAM, n=13). Maximal oxidative capacities (V(max)) and complexes I, II and IV activities of the gastrocnemius mitochondrial respiratory chain were determined, using glutamate-malate, succinate (Vs) and TMPD-ascorbate (V(TMPD)) substrates.; V(max) was decreased in IR (4.6+/-0.4 microM/min/g dry weight) compared to both SHAM and CTL muscles (8.5+/-0.5 and 7.1+/-0.4 microM/min/g dry weight, -46% and -36%, P<0.001, respectively). V(S) and V(TMPD) were reduced in IR muscle (-56% and -48% for V(S); and -25% and -24% for V(TMPD), P<0.001) as compared to SHAM and CTL). V(S) and V(TMPD) were similar in SHAM and CTL muscles.; Five hours ischemia-reperfusion significantly impaired complexes I, II and IV of the ischemic skeletal muscle mitochondrial respiratory chain. Interestingly, only V(max) was slightly altered in the contralateral leg, supporting that the nonischemic leg might be used as a control when assessing mitochondrial function in the experimental setting of unilateral hind limb ischemia

    Front Physiol

    Get PDF
    OBJECTIVE: Increased mechanical stress and contractility characterizes normal left ventricular (LV) subendocardium (Endo) but whether Endo mitochondrial respiratory chain complex activities is reduced as compared to subepicardium (Epi) and whether pressure overload-induced LV hypertrophy (LVH) might modulate transmural gradients through increased reactive oxygen species (ROS) production is unknown. METHODS: LVH was induced by 6 weeks abdominal aortic banding and cardiac structure and function were determined with echocardiography and catheterization in sham-operated and LVH rats (n = 10 for each group). Mitochondrial respiration rates, coupling, content and ROS production were measured in LV Endo and Epi, using saponin-permeabilized fibers, Amplex Red fluorescence and citrate synthase activity. RESULTS: In sham, a transmural respiratory gradient was observed with decreases in endo maximal oxidative capacity (-36.7%, P < 0.01) and complex IV activity (-57.4%, P < 0.05). Mitochondrial hydrogen peroxide (H(2)O(2)) production was similar in both LV layers. Aortic banding induced mild LVH (+31.7% LV mass), associated with normal LV fractional shortening and end diastolic pressure. LVH reduced maximal oxidative capacity (-23.6 and -33.3%), increased mitochondrial H(2)O(2) production (+86.9 and +73.1%), free radical leak (+27.2% and +36.3%) and citrate synthase activity (+27.2% and +36.3%) in Endo and Epi, respectively. Transmural mitochondrial respiratory chain complex IV activity was reduced in LVH (-57.4 vs. -12.2%; P = 0.02). CONCLUSIONS: Endo mitochondrial respiratory chain complexes activities are reduced compared to LV Epi. Mild LVH impairs mitochondrial oxidative capacity, increases oxidative stress and reduces transmural complex IV activity. Further studies will be helpful to determine whether reduced LV transmural gradient in mitochondrial respiration might be a new marker of a transition from uncomplicated toward complicated LVH
    corecore