47 research outputs found

    The Release Kinetics of Melatonin from Innovative Dosage Forms: The Role of the Fractal Geometry of the “Vehicle”

    Get PDF
    Melatonin (N-acetyl-5-methoxytryptamine) is an antioxidant active pharmaceutical ingredient with numerous applications as medicine and nutraceutical. Melatonin, a hormone synthesized by the pineal gland, has a significant role in the regulation of the circadian biological clock. The aim of this chapter is to present the conventional solid and liquid forms (i.e., tables, capsules, suspensions, etc.) and the nanoformulations (i.e., liposomes, niosomes, polymeric nanoparticles, chitosomes, calcium alginate beads, etc.) of melatonin and to give special attention to its release kinetics from the pharmaceutical vehicle. These systems have been designed and developed as platforms for the delivery and release of melatonin. In all cases, the controlled release of melatonin is the main goal of its loading into drug delivery platforms. Fractal analysis is a mathematical tool to quantify nature and physical systems’ complexity. These systems have been characterized as fractal objects, due to their fractional dimensions. In this chapter, we are probing the interrelationship between the fractal dimension of pharmaceutical vehicle and the release profile of melatonin. Several examples will be given in order to understand in depth the reason of controlled-release profile of melatonin and its added value for the development of a new medicine and/or nutraceutical

    Complexation of cationic-neutral block polyelectrolyte with insulin and in vitro release studies

    Get PDF
    Insulin (INS) was incorporated into complexes with the block polyelectrolyte quaternized poly[3,5-bis(dimethylaminomethylene)hydroxystyrene]-b-poly(ethyleneoxide) (QNPHOSEO), which is a cationic-neutral block polyelectrolyte. Light scattering techniques are used in order to examine the size, the size distribution and the ζ-potential of the nanocarriers in aqueous and biological media, which are found to depend on the ratio of the components and the physicochemical parameters during and after complex preparation. Circular dichroism and infrared spectroscopy, employed to investigate the structure of the complexed INS, show no alteration of protein structure after complexation. In vitro release profiles of the entrapped protein are found to depend on the ratio of the components and the solution conditions used during preparation of the complexes

    Advanced nanocarriers for an antitumor peptide

    Get PDF
    In this work, tigapotide (PCK3145) was incorporated into novel nanocarriers based on polymeric, lipidic and dendrimeric components, in order to maximize the advantages of the drug delivery process and possibly its biological properties. PCK3145 was incorporated into lipidic nanocarriers composed of Eggphosphatidylcholine (EggPC) and dipalmytoylphosphatidylcholine (DPPC) (EggPC:PCK3145 and DPPC:PCK3145, 9:0.2 molar ratio), into cationic liposomes composed of EggPC:SA:PCK3145 and DPPC:SA:PCK3145 (9:1:0.2 molar ratio) into complexes with the block polyelectrolyte (quaternized poly[3,5bis(dimethylaminomethylene)hydroxystyrene]-b-poly(ethylene oxide) (QNPHOSEO) and finally into dendrimeric structures (i.e. PAMAM G4) . Light scattering techniques are used in order to examine the size, the size distribution and the z-potential of the nanocarriers in aqueous and biological media. Fluorescence spectroscopy was utilized in an attempt to extract information on the internal nanostructure and microenvironment of polyelectrolyte/PCK3145 aggregates. Therefore, these studies could be a rational roadmap for producing various effective nanocarriers in order to ameliorate the pharmacokinetic behavior and safety issues of antitumor and anticancer biomolecules

    Insulin/Poly(ethylene glycol)-block-poly(L-lysine) Complexes: Physicochemical Properties and Protein Encapsulation

    Get PDF
    Insulin (INS) was encapsulated into complexes with poly(ethylene glycol)-block poly(L-lysine) (PEG-b-PLys), which is a polypeptide-based block copolymer (a neutral-cationic block polyelectrolyte). These macromolecules can encapsulate INS molecules in aqueous conditions via electrostatic interactions. Light scattering techniques are used in order to examine the complexation process of the hybrid nanoparticles in a gamut of buffers, as a function of protein concnetration. The physicochemical and structural characteristics of the complexes depend on the ionic strength of the aqueous medium, while the concentration of PEG-b-PLys was constant through the series of solutions. As INS concentration increased each polyelectrolyte chain interacts with an increasing number of INS molecules, the degree of charge neutralization becomes higher and the size distribution of the complexes decreased also, especially at the highest ionic strength. The size/structure of complexes diluted in biological medium indicated that the copolymer imparts stealth properties and colloidal and biological stability to the complexes, which could in turn affect the clearance properties in vivo. Therefore, these studies could be a rational roadmap for designing the optimum complexes/effective nanocarriers for proteins and peptides

    Chimeric Stimuli-Responsive Liposomes as Nanocarriers for the Delivery of the Anti-Glioma Agent TRAM-34

    Get PDF
    Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic molecules that are indicated for severe human diseases. Gliomas are the most frequent type of brain tumor, with glioblastoma being the most common and malignant type. The current state of glioma treatment requires innovative approaches that will lead to efficient and safe therapies. Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies that may contribute to this effort. The present study deals with the development of functional chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation, delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells. Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate antiglioma activity. The nanosystems were able to successfully manifest functional properties under pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric nanoplatforms presented herein have shown promise for biomedical applications so far and should be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to glioblastoma cells

    One-step rapid tracking and isolation of senescent cells in cellular systems, tissues, or animal models via GLF16

    Get PDF
    Identification and isolation of senescent cells is challenging, rendering their detailed analysis an unmet need. We describe a precise one-step protocol to fluorescently label senescent cells, for flow cytometry and fluorescence microscopy, implementing a fluorophore-conjugated Sudan Black-B analog, GLF16. Also, a micelle-based approach allows identification of senescent cells in vivo and in vitro, enabling live-cell sorting for downstream analyses and live in vivo tracking. Our protocols are applicable to cellular systems, tissues, or animal models where senescence is present. For complete details on the use and execution of this protocol, please refer to Magkouta et al.</p

    Recent Advances and Future Perspectives in Polymer-Based Nanovaccines

    No full text
    Vaccination is the most valuable and cost-effective health measure to prevent and control the spread of infectious diseases. A significant number of infectious diseases and chronic disorders are still not preventable by existing vaccination schemes; therefore, new-generation vaccines are needed. Novel technologies such as nanoparticulate systems and adjuvants can enable safe and effective vaccines for difficult target populations such as newborns, elderly, and the immune-compromised. More recently, polymer-based particles have found application as vaccine platforms and vaccine adjuvants due to their ability to prevent antigen degradation and clearance, coupled with enhanced uptake by professional antigen-presenting cells (APCs). Polymeric nanoparticles have been applied in vaccine delivery, showing significant adjuvant effects as they can easily be taken up by APCs. In other words, polymer-based systems offer a lot of advantages, including versatility and flexibility in the design process, the ability to incorporate a range of immunomodulators/antigens, mimicking infection in different ways, and acting as a depot, thereby persisting long enough to generate adaptive immune responses. The aim of this review is to summarize the properties, the characteristics, the added value, and the limitations of the polymer-based nanovaccines, as well as the process of their development by the pharmaceutical industry

    Liposomes in Polymersomes: Multicompartment System with Temperature-Triggered Release

    No full text
    Multicompartmentalization is a key feature of eukaryotic cells, allowing separation and protection of species within the membrane walls. During the last years, several methods have been reported to afford synthetic multicompartment lipidic or polymeric vesicles that mimic biological cells and that allow cascade chemical or enzymatic reactions within their lumen. We hereby report on the preparation and study of liposomes in polymersomes (LiPs) systems. We discuss on the loading and coloading of lipidic nanovesicles made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (diC15-PC), or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) inside the lumen of giant poly(butadiene)-b-poly(ethylene oxide) (PBut-b-PEO) polymersomes. These LiPs systems were characterized by confocal microscopy and UV–visible spectroscopy. We further demonstrate that we can achieve controlled sequential release of dyes from diC15-PC and DPPC liposomes at defined temperatures inside the giant PBut-b-PEO polymersomes. This controlled release could be used as a means to initiate cascade reactions on demand in confined microreactors
    corecore