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Abstract: Nanocarriers are delivery platforms of drugs, peptides, nucleic acids and other therapeutic
molecules that are indicated for severe human diseases. Gliomas are the most frequent type of
brain tumor, with glioblastoma being the most common and malignant type. The current state
of glioma treatment requires innovative approaches that will lead to efficient and safe therapies.
Advanced nanosystems and stimuli-responsive materials are available and well-studied technologies
that may contribute to this effort. The present study deals with the development of functional
chimeric nanocarriers composed of a phospholipid and a diblock copolymer, for the incorporation,
delivery and pH-responsive release of the antiglioma agent TRAM-34 inside glioblastoma cells.
Nanocarrier analysis included light scattering, protein incubation and electron microscopy, and
fluorescence anisotropy and thermal analysis techniques were also applied. Biological assays were
carried out in order to evaluate the nanocarrier nanotoxicity in vitro and in vivo, as well as to evaluate
antiglioma activity. The nanosystems were able to successfully manifest functional properties under
pH conditions, and their biocompatibility and cellular internalization were also evident. The chimeric
nanoplatforms presented herein have shown promise for biomedical applications so far and should
be further studied in terms of their ability to deliver TRAM-34 and other therapeutic molecules to
glioblastoma cells.
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1. Introduction

One of the main obstacles to solid tumor therapy is the poor pharmacokinetics of drug
molecules [1]. Stimuli-responsive technology is a step further for drug delivery, assisting
the release of anticancer agents in a specific spatiotemporal way. After a stimuli-responsive
nanocarrier reaches to the tumor site, it responds to the extracellular and/or intracellular
environments, releasing the incorporated bioactive substance in specific tissues or cell
compartments, but also at a specific rate. This utility is designed based on the deviant
physiological conditions that exist inside a tumor, compared with healthy tissues [2]. These
nanocarriers are defined as “functional” and “smart” advanced drug delivery nanosystems
(aDDnSs) and are very promising vehicles for co-delivering diagnostic and therapeutic
agents [3,4].

Gliomas are the most frequent type of tumor in the brain tissue. Gliomas in adults
usually belong to the so-called diffuse type, where the brain tissue is infiltrated by diffuse
tumor cells, and have been classified as astrocytic, oligodendroglial and oroligoastrocytic
tumors, depending on their phenotype. The World Health Organization (WHO) distin-
guishes gliomas based on their cell type and malignancy grade (I to IV) and glioblastomas
are the most common and malignant type. Currently, standard glioma treatment utilizes
surgical resection, followed by a combination of radiotherapy and a specific chemother-
apeutic agent, temozolomide. Poor prognosis, frequent recurrences and short survival
have led to a demand for new and innovative therapeutic approaches for this difficult and
complex disease [5,6].

Compared with normal cells, glioblastoma cells exhibit different expression in certain
ion channels that relate to hallmarks of their aggressiveness. These channels mostly
regulate the cell volume and intracellular Ca2+ concentration. Data on the intermediate-
conductance calcium-activated potassium channel KCa3.1 (one of the three KCa channels)
and on its altered expression and function in glioblastoma cells have recently become
available and are very important for developing new therapeutic strategies [7–9]. The
channel is inhibited by clotrimazole and 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole
(TRAM-34). Glioblastoma treatment with TRAM-34 is not well-established yet and this
is evident in the limited number of studies in the literature. However, this molecule is
very promising in this regard, since its significant role in glioblastoma cell migration and
consequent infiltrative behavior has been demonstrated both in vitro and in vivo [10–13].

Despite the promising therapeutic profile, there is no appropriate vehicle for TRAM-
34, which leads to the utilization of lipophilic carriers. On top of that, the administration
of very high doses in vivo is discouraging. In addition, the molecule has been associated
with cytochrome P450 (CYP) activity inhibition in high doses, limiting its potential for
co-therapy with other drugs [14]. A study has demonstrated that the binding site of the
molecule resides in the cytoplasmic side of the cell membrane and interaction occurs only
when TRAM-34 is applied from the inside [8,15,16]. Hence, its delivery inside the cell
is of critical importance and can be assisted by functional nanocarriers. Specifically, the
therapeutic profile of TRAM-34 may be improved by assisting its targeting to the glioblas-
toma site and facilitating its permeation through the cell membrane to the intracellular
environment, where it can bind to the KCa3.1 ion channel. This might be achieved, for
example, through pH-responsive nanocarriers, which will be activated in the low pH of
early or late endosomes and promote the drug release inside the cell [17]. In this way, the
dosage and observed adverse effects of the molecule may be reduced.

The aim of the present study was to design, develop and biologically evaluate pH-
responsive chimeric aDDnSs composed of the phospholipid L-α-phosphatidylcholine (Egg,
Chicken) (EPC) and pH-responsive amphiphilic diblock copolymers poly(2-(dimethylamino)
ethyl methacrylate)-b-poly(lauryl methacrylate) (PDMAEMA-b-PLMA) with the incorpo-
rated drug molecule TRAM-34 (Figure 1). EPC is established in the literature, as well as
in the market of liposomal medicines [18,19]. Its gel-to-liquid crystalline phase transition
(Tm) has been identified around −5 ◦C [20]. PDMAEMA-b-PLMA copolymers have been
previously utilized for the development of chimeric nanosystems with added value in
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their physicochemical characteristics (i.e., colloidal stability, etc.) [21,22]. PDMAEMA
is a well-established polyelectrolyte that has been extensively studied for the formation
of nanocomplexes with DNA and gene delivery, and exhibits pH-responsive properties,
due to the pKa of amino groups being around 7.5–8.0 [23–25]. PLMA is a hydrophobic
polymer, expected to serve as an anchor for the attachment of the copolymer onto the lipid
bilayer. To the best of our knowledge, this is the first attempt to incorporate TRAM-34 into
nanocarriers and deliver it inside glioma cells.

Figure 1. Chemical structures of (A) EPC phospholipid, (B) PDMAEMA-b-PLMA diblock copolymer,
(C) TRAM-34 drug molecule and (D) the resultant chimeric nanocarriers. The block molar ratio (n:m)
in the copolymers is 70–30% for PDMAEMA-b-PLMA 1 and 60–40% for PDMAEMA-b-PLMA 2.

2. Results and Discussion
2.1. Membrane Fluidity of Chimeric Bilayers

The assessment of the effect of the PDMAEM-b-PLMA copolymers on EPC membrane
fluidity was achieved using steady-state fluorescence anisotropy (FA) (Figure 2). Two types
of probes were utilized. 1,6-diphenyl-1,3,5-hexatriene (DPH) is a non-polar molecule that
is incorporated inside the hydrophobic region of the liposome bilayer with its long axis
parallel to the acyl chains, whereas 1-[4-(trimethyl-ammonium) phenyl]-6-phenyl-1,3,5-
hexatriene (TMA-DPH) is anchored onto the bilayer, with its positively charged amino
groups in contact with the medium water molecules [26]. These two molecules allow for
evaluation of the mobility of both the hydrophobic and the hydrophilic regions of the
membrane, thus offering a complete picture of the membrane order at different depths of
the bilayer [26].

The hydrophobic part of EPC bilayers was affected in terms of membrane fluidity by
the progressive addition of either copolymer, reflected in the DPH anisotropy (Figure 2A). In
every case, anisotropy was higher than the EPC reference, which means that both polymers
are incorporated inside the membrane and interact with it at all concentrations. Specifically,
up to a 0.5 polymer molar ratio the interaction becomes gradually higher, resulting in
increasing DPH anisotropy and decreasing membrane fluidity. In addition, PDMAEMA-
b-PLMA 1 (PDMAEMA1) seems generally to affect the membrane fluidity more than
PDMAEMA-b-PLMA 2 (PDMAEMA2). However, at a molar ratio of 9:1, the anisotropy due
to PDMAEMA-b-PLMA 1 is reduced, which indicates three possible scenarios regarding the
copolymer: (i) its amount results in fluidity that is close to EPC, with increased cooperativity
between the phospholipids and the copolymer molecules; (ii) it self-assembles in polymeric
structures that do not reach the membrane interior; (iii) it creates polymer-rich domains
that generate more space between the phospholipid chains and allow for more intense spin
of DPH [21,26].
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Figure 2. Fluorescence anisotropy of (A) DPH and (B) TMA-DPH inside EPC membranes, in the presence of increasing
molar ratios of PDMAEMA-b-PLMA 1 (blue line) and PDMAEMA-b-PLMA 2 (red line).

The polar region of the EPC bilayers was affected in a different way by the two
polymers, compared with the hydrophobic region (Figure 2B). Low concentrations of the
copolymers, up to 0.1 for PDMAEMA-b-PLMA 1 and 0.05 for PDMAEMA-b-PLMA 2,
brought about a decrease in the anisotropy of TMA-DPH, indicating lipid–polymer inter-
actions that led to increased mobility of the polar head groups or domain formation. At
higher concentrations, they resulted in increased anisotropy/decreased head group mobil-
ity, with PDMAEMA-b-PLMA 2 reversing its effect at a 9:1 molar ratio and going below the
anisotropy of EPC. It is important to note that PDMAEMA-b-PLMA 1 never exceeds the
EPC anisotropy value, but by increasing the concentration, the mobility decreases gradually
to reach EPC again. As a result, this molecule always results in the same or greater head
group fluidity than EPC. On the other hand, PDMAEMA-b-PLMA 2 reduces the mobility
at 9:0.2 and even more at 9:0.5, not allowing for probe spin at those concentrations. At 9:1,
it either improves the fluidity again or it forms polymeric assemblies that do not reach the
membrane–aqueous medium interface, not affecting the head groups at all [21,26].

2.2. Thermotropic Behavior of Chimeric Bilayers with TRAM-34

An essential aspect of liposomal development and especially chimeric nanosystems
is the thermodynamics of membranes and the way their thermotropic behavior and func-
tionality is altered by incorporating foreign biomaterials, such as drug molecules and
amphiphilic copolymers [27,28]. The interactions between 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), TRAM-34 and PDMAEMA-b-PLMA 1 and 2 in physiological
(phosphate buffer saline, PBS) and acidic environment (citrate buffer) were studied by
means of differential scanning calorimetry (DSC) analysis and the diagrams are presented
in Figure 3 for heating and Figure S1 for cooling, whereas the calorimetric parameter values
are listed collectively in Table S1. Since EPC is a phospholipid mixture and does not exhibit
a distinct transition curve, we chose DPPC for this study, which has a Tm around 41 ◦C [29].

First, the incorporation of the drug molecule inside the membrane led to interactions
with the polar heads and the elimination of the pre-transition of DPPC membrane phos-
pholipids in PBS (Figure 3A) [30]. Chimeric bilayers were nevertheless expected to have no
pre-transition, because of the polymer’s effect on the membrane [22]. Concerning the main
transition, we observed that the incorporation of TRAM-34 led to a slight decrease in the
Tm, an increase in the ∆T1/2,m and a slight increase in the ∆Hm for all systems, indicating
the thermotropic effect of the drug molecule on the membranes. In the case of DPPC,
the main transition curve was influenced the least by the drug molecule, potentiating the
absence of the drug molecule from the membrane interior or its distribution in a more
homogeneous manner. However, in the case of the chimeric systems, the formation of a
shoulder on the main transition, along with all other alterations, is an indication of the
creation of drug-related domains [31].
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Figure 3. DSC heating curves in (A) PBS (pH = 7.4) and (B) citrate buffer (pH = 4.5) of a. DPPC, b. DPPC:TRAM-34,
c. DPPC:PDMAEMA-b-PLMA 1, d. DPPC:PDMAEMA-b-PLMA 1:TRAM-34, e. DPPC:PDMAEMA-b-PLMA 2 and f.
DPPC:PDMAEMA-b-PLMA 2:TRAM-34.

After exposure to an acidic environment, the drug-loaded chimeric bilayer transi-
tions exhibited no shoulders and the transition enthalpy ∆Hm decreased, particularly for
DPPC:PDMAEMA-b-PLMA 1 (Figure 3B). In addition, the membrane cooperativity im-
proved for the first polymer, but decreased for the second, as indicated by the ∆T1/2,m
values. According to our previous study, it would be generally expected to observe lower
cooperativity in bilayers after acidic exposure, due to pH-responsive membrane disruption;
however, the disappearance of the drug-related shoulder led to the opposite result for the
first polymer [22]. These observations combined, we assume that TRAM-34 is released from
the chimeric membranes in acidic conditions, based on the divergent behavior between
drug-loaded and reference systems.

2.3. Physicochemical Characteristics, Stimuli-Responsiveness and Protein Interactions of
Chimeric Nanocarriers

The physicochemical properties of EPC, EPC:PDMAEMA-b-PLMA 1 and 2, with
or without incorporated TRAM-34, are presented in Table 1. The size distributions of
conventional and chimeric nanocarriers are presented in Figure S2. For each property, i.e.,
size, polydispersity and zeta potential, the variation under different temperatures and
pH conditions was evaluated for the nanocarriers (Figure 4). For conventional liposomes,
the hydrodynamic diameter was calculated at around 150 nm, with the polydispersity
index (PDI) being 0.370. When loaded with TRAM-34, EPC liposomes increased in size by
15 nm and polydispersity slightly decreased. Notably, after a while, the suspension led to
precipitation, obviously because of instability of the system and consequent aggregation.

Table 1. Physicochemical characteristics of the developed nanosystems.

Nanosystem Dh
1 (nm) SD 2 PDI 3 SD z-pot 4 (mV) SD

EPC 152.7 1.0 0.370 0.016 −2.7 0.2
EPC:PDMAEMA1 157.3 1.7 0.158 0.015 11.8 0.4
EPC:PDMAEMA2 146.3 2.5 0.223 0.011 8.3 0.9

EPC:TRAM-34 167.7 3.9 0.335 0.022 −1.2 0.1
EPC:PDMAEMA1:TRAM-34 164.4 8.0 0.236 0.052 14.0 1.2
EPC:PDMAEMA 2:TRAM-34 139.2 0.8 0.193 0.006 12.4 0.8

1 Hydrodynamic diameter; 2 standard deviation; 3 polydispersity index; 4 zeta potential.
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Figure 4. Size (Dh), polydispersity (PDI) and zeta potential (z-pot) of chimeric nanocarriers in different (A) temperatures (PBS, pH = 7.4), (B) pH conditions (25 ◦C) and (C) media (25 ◦C).
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After the insertion of the amphiphilic diblock copolymers in the EPC system, the
nanoparticle size was retained at 150 nm. The polydispersity was greatly reduced, to
0.160 for EPC:PDMAEMA-b-PLMA 1 and to 0.220 for 2 [32]. At the same time, the ζ-
potential increased to about 12.0 and 8.0 mV for the two copolymers, respectively. This is
attributed to the positive charge that the PDMAEMA amino groups carry in PBS, due to
their pKa being approximately 7.5–8.0 [24,25]. TRAM-34-loaded chimeric liposomes were
stable in due time in terms of particle size, whereas precipitation did not occur for up to
15 days (data not shown).

The effect of increasing temperature on liposomal size is presented in Figure 4A. We
observe that by increasing temperature from 25 ◦C to 37 ◦C, the size underwent an increase
as well. This behavior has been attributed to the energy content of liposomal membranes
at high temperatures and the consequent vesicular volume increase [33]. Concerning
acidic conditions, a slight increase in the chimeric nanosystems’ size in pH = 4.5 was
observed, presumably owing to the PDMAEMA chains stretching after protonation of the
amino groups, whereas EPC liposomes remained the same (Figure 4B). The most profound
effect of a low pH environment on these systems was identified in the ζ-potential values.
Specifically, their charge doubled, which is attributed to the increased protonation of the
PDMAEMA amino groups in these acidic conditions [24,25].

The developed chimeric liposomes were also tested for their binding with serum
proteins, through a protocol involving incubation with fetal bovine serum (FBS) medium.
The results are presented in Figure 4C. Positively charged nanocarriers are substrates for
extensive protein adsorption, such as bovine serum albumin (BSA) [34,35]. After incubation,
EPC liposomes remained almost stable, with only a slight size increase, whereas chimeric
ones presented a size increase of 15–20 nm. This outcome was more or less expected,
since EPC membranes are neutral in terms of charge, whereas EPC:PDMAEMA-b-PLMA
liposomes possess a positive surface charge and absorb more proteins, which increase their
apparent size. Polydispersity also increased, with PDI rising by less than 0.100 for EPC
and between 0.200–0.250 for chimeric nanoparticles. Finally, the zeta potential remained
unaltered for EPC, but decreased by 15–20 mV for chimeric membranes, indicating the
creation of a protein corona that surrounds the vesicles after protein adsorption [36]. The
difference between the two utilized copolymers is attributed to the double Mw of the
PDMAEMA-b-PLMA 2 copolymer, associated with a greater number of positively charged
amino groups.

Transmission electron microscopy (TEM) images of empty and TRAM-34-loaded
nanocarriers are presented in Figure 5. In these images, we were able to assess the structure
and morphology of the nanosystems, though several membranes probably collapsed
due to the drying process [37,38]. EPC liposomes loaded with TRAM-34 could not be
evaluated, since they were unstable after preparation. EPC liposomes are sphere-like
objects with sizes greatly varying below and above the 200-nm scale bar value (Figure 5A).
The membranes, lamellae and inner hydrophilic cores were more easily observed in the
cases of chimeric liposomes (Figure 5B,C). Particles were unilamellar, small (below 200 nm)
and more uniform in size, compared with EPC [39,40]. Concerning chimeric nanoparticles
loaded with TRAM-34, we were unable to obtain good quality images, particularly for
EPC:PDMAEMA-b-PLMA 2, possibly due to the nature of the drug. For EPC:PDMAEMA-
b-PLMA 1, however, we could observe vesicular morphologies, and many membrane
fragments or worm-like micelles were also visible (Figure 5D). The latter structures and
their origins in systems that contain lipid and polymer biomaterials in certain molar ratios
have been thoroughly discussed in a previous study [21].
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Figure 5. TEM images of (A) EPC, (B) EPC:PDMAEMA-b-PLMA 1, (C) EPC:PDMAEMA-b-PLMA 2, (D) EPC:PDMAEMA-
b-PLMA 1:TRAM-34 and (E) EPC:PDMAEMA-b-PLMA 2:TRAM-34 nanosystems.

2.4. Drug Entrapment Efficiency % (EE%) and Release in Acidic Conditions

The initially utilized amount of TRAM-34 in the chimeric nanosystems was designed
to result in a concentration of 1.2 mg/mL in PBS, serving for in vitro studies, and 20 mg/mL
of total biomaterials, i.e., phospholipid and copolymer, were in each case used to formulate
that amount. However, each chimeric nanosystem behaved differently. In particular, with
EPC:PDMAEMA-b-PLMA 1, we achieved an IE% of 73%, whereas with EPC:PDMAEMA-
b-PLMA 2, it was 62% (Table 2). The difference in the architecture between the two copoly-
mers was determinant for the final drug incorporation, with PDMAEMA-b-PLMA 1 being
more hydrophilic and shorter as a molecule, probably allowing for higher amounts of the
drug to reside inside the lipid bilayer, which was also evident through DSC analysis [41,42].
All biological assays were carried out by utilizing the initial formulations.
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Table 2. IE% of TRAM-34 inside EPC:PDMAEMA-b-PLMA chimeric nanocarriers.

Nanosystem
Initial

Concentration
(mg/mL)

Concentration
before Extrusion

(mg/mL)
SD 1 IE% 2

Concentration
after Extrusion

(mg/mL)
SD IE%

EPC:TRAM-34 1.20 0.18 0.03 15 0.00 0.00 0
EPC:PDMAEMA 1:

TRAM-34 1.20 0.96 0.06 80 0.88 0.05 73

EPC:PDMAEMA 2:
TRAM-34 1.20 0.82 0.05 68 0.74 0.04 62

1 Standard deviation; 2 entrapment efficiency %.

The drug molecule release profiles for the two chimeric nanosystems in physiological
and acidic conditions are presented in Figure 6. Based on the data, we drew conclusions
on the behavior of these nanocarriers, which is defined by the pH-responsive behavior
of PDMAEMA chains in acidic environments. First, there is a difference in the release
profiles between the two chimeric nanocarriers in PBS, whereas both exhibited burst release
phenomena in the first hour. EPC:PDMAEMA-b-PLMA 1 released 40% of the drug after
1 h and then slowly reached up to 55% after 6 h (Figure 6A), whereas EPC:PDMAEMA-
b-PLMA 2 released around 30% after 1 h and a total of 37% after 5 h (Figure 6B). This
behavior is probably due to the different architecture of the utilized block copolymer, with
the first being smaller and relatively more hydrophilic, whereas the second was double in
Mw and more hydrophobic. These properties create different phases inside the chimeric
bilayer and lead to different interactions of the copolymer hydrophobic block with TRAM-
34, as indicated by DSC analysis. The cumulative release did not increase after 24 h for
both nanocarriers.

Figure 6. Cumulative drug release of TRAM-34 from (A) EPC:PDMAEMA-b-PLMA 1 and (B) EPC:PDMAEMA-b-PLMA 2
chimeric liposomes in PBS (pH = 7.4) and citrate buffer (pH = 6.5, 5.5 and 4.5).

Concerning acidic conditions, the picture was almost the same for both nanosystems
in each pH studied. A drug burst release of around 70% was achieved after the first 15 min,
followed by 80% for EPC:PDMAEMA-b-PLMA 1 and 85% for EPC:PDMAEMA-b-PLMA
2 after 30 min and ending up at almost 100% after 1 h for both nanosystems. The difference
between physiological conditions and acidic ones is due to the pH-responsive properties
of the prepared nanosystems, where the PDMAEMA groups around the drug-loaded
membrane become more protonated below their pKa value (~7.5–8.0), mobilize the PLMA
segments and perturb the membrane, leading to the rapid release of a high amount of the
drug [24,25,43,44]. The drug release degree and kinetic profile is the same for all pH values,
because PDMAEMA is almost completely protonated at 6.5 and below, based on its pKa.
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2.5. In Vitro Toxicity and Uptake of Chimeric Nanocarriers by HEK-293 Cells

The toxicity of nanoparticles, also called “nanotoxicity”, is an issue that concerns re-
searchers greatly, because it is the main obstacle in the further development of nanomedicines.
Certain methods have been widely utilized to evaluate nanocarrier in vitro toxicity, ad-
dressing cell toxicity, immunotoxicity and genotoxicity, such as the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. In
addition, different types of normal and cancer cells have served this purpose [45]. How-
ever, there are some limitations in this approach, which emanate from the incompatibility
between the nature of the nanoparticles, e.g., liposomes, and the chemical basis of these
methods [46]. Herein, we assessed the nanocarrier and TRAM-34-loaded nanocarrier toxic-
ity via the AlamarBlue® assay. The % cell viability of HEK-293 cells after their exposure to
increasing concentrations of the nanosystems is presented in Figure 7.

Figure 7. In vitro toxicity of chimeric nanocarriers with or without drug on the HEK-293 cell line.

At first glance, all nanocarriers, including EPC liposomes and EPC:PDMAEMA-b-
PLMA chimeric liposomes, loaded with TRAM-34 or not, are non-toxic up to 30 µg/mL
total biomaterial concentration. The concentrations of the drug molecule were 0.3, 0.8, 3.3,
5.0, 16.7 and 33.3 µM for the nanocarrier concentrations 2, 5, 20, 30, 100 and 200 µg/mL,
respectively. Apparently, neither the nanocarrier nor the incorporated drug induced toxic
effects on HEK-293 cells up to 30 µg/mL carrier concentration. Above that, EPC liposomes
maintained their lack of toxicity. On the other hand, chimeric liposomes, with or without
TRAM-34, appeared to induce cell toxicity at concentrations of 100 and 200 µg/mL, espe-
cially EPC:PDMAEMA-b-PLMA 1. The concentrations of the polymers in these cases were
around 33 and 66 µg/mL for the first and 50 and 100 µg/mL for the second, respectively.
We assume that the toxicity can possibly be attributed to the high amount of polymer in the
microenvironment of the cells, which is cationic and interacts with the cellular membrane,
especially for the first, which has more cationic groups, as well as to the cellular uptake
of these cationic nanoparticles (see below) [47]. The toxicity of PDMAEMA on HEK-293
cells has been investigated before, where the Mw of the polymer was much higher than
herein (354,000 g/mol) and the polymer alone exhibited a much higher toxicity, at 15 and
20 µg/mL after 24 h [48].

The cellular uptake of the chimeric liposomes, labeled with rhodamine B, by HEK-293
cells after 24 h incubation was evaluated through confocal laser scanning microscopy
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(CLSM) and is presented in Figure 8. For this assessment, we utilized the nanocarriers in
a total biomaterial concentration of 30 µg/mL, corresponding to 1.72 µg/mL (5 µM) of
TRAM-34, which was the tested concentration for antiproliferative effects on glioma cells
in previous studies [11]. The confocal microscopy images show that the cells internalize the
chimeric liposomes. This is achieved probably through electrostatic interaction between
the positively charged nanocarriers and the negatively charged cell membrane, leading
to adsorptive endocytosis [49,50]. In addition, the nanoparticles did not seem to end up
inside the nucleus to a high degree. Instead, in some cases they were observed close to the
inner side of the cell membrane (Figure 8B) [8,51,52].

Figure 8. CLSM images of EPC:PDMAEMA-b-PLMA 1 (A,B) and EPC:PDMAEMA-b-PLMA 2
(C,D) chimeric nanosystem endocytosis in HEK-293 cells after 24 h incubation at a concentration of
30 µg/mL.

2.6. In Vitro Antiproliferative Effect and Uptake of Drug-Loaded Chimeric Nanocarriers by
GL261 Cells

The chimeric nanocarriers with incorporated TRAM-34 were evaluated for their effect
on the GL261 murine glioma cell line, through the MTT assay. Glioma cells overexpress the
intermediate-conductance KCa3.1 channel and its blockade by the drug/inhibitor increases
cell apoptosis, whereas other effects include a decrease in colony formation, etc. [53]. The
viability results of GL261 cells after 24 h, 48 h and 72 h incubation with drug, empty
and drug-loaded nanocarriers are provided in Figure 9. The TRAM-34 concentration was
1.72 µg/mL (5 µM), whereas that of the nanocarriers was 30 µg/mL in all cases [11].
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Figure 9. In vitro antiproliferative activity of chimeric nanocarriers with TRAM-34 on the GL261 murine glioma cell line
after 24, 48 and 72 h incubation (C stands for control untreated cells).

First of all, the effect of the drug molecule TRAM-34 on the GL261 proliferation was
consistent for all three timepoints. This means that it always leads to around 70–75% cell
growth at 5 µM, compared with the control, regardless of the duration of exposure. This
antiproliferative effect on GL261 cells has been previously reported [11]. Serving as controls
for the treatment, empty chimeric nanocarriers of a biomaterial concentration of 30 µg/mL
were also tested for their effect on cell growth and were found to have no effect after 24 h, a
slight effect after 48 h and a high effect after 72 h, leading to almost 30% growth, compared
to the control. This time-dependent profile must be related with the cellular uptake of these
nanocarriers by the particular cells, which is high, even after 24 h (see below). On this
basis, EPC:PDMAEMA-b-PLMA 1:TRAM-34 was more toxic than neat TRAM-34 after 24 h,
leading to 60% growth, whereas EPC:PDMAEMA-b-PLMA 2:TRAM-34 was less efficient,
leading to 80% growth. After 48 h, the effect of both drug-loaded nanocarriers was the
same with 24 h, whereas the effect of the empty carriers was perceptible. Finally, after
72 h, the loaded nanocarriers allowed for 20% growth, whereas the empty nanocarriers
led to 30% growth, compared to the control. Conclusively, the antiproliferative effect of
the EPC:PDMAEMA-b-PLMA 1:TRAM-34 chimeric nanosystem on glioma cells is slightly
higher than the control and the second drug-loaded nanocarrier, whereas the nanocarriers
are toxic for GL261 cells after long-term exposure.

The cellular uptake of chimeric liposomes, labeled with rhodamine B, by GL261 murine
glioma cells after 24 h incubation was investigated through fluorescence microscopy (FM).
The images are provided in Figure 10, together with the control. We observed in the images
that both chimeric nanocarriers were localized inside the glioma cells. The interesting
aspect of their behavior is that although they are internalized by these cells, probably
through adsorptive endocytosis, after 24 h, they do not exert any toxic effects right away.
However, it takes 48 h and even 72 h to produce their toxic effects (Figure 9).
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Figure 10. FM images of EPC:PDMAEMA-b-PLMA 1 and EPC:PDMAEMA-b-PLMA 2 chimeric nanosystems in GL261 cells stained with Hoechst (blue) after 24 h incubation at a
concentration of 30 µg/mL.
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2.7. In Vivo Toxicity of Chimeric Nanocarriers

EPC:PDMAEMA-b-PLMA 1 chimeric liposomes, which were more effective in deliv-
ering TRAM-34 inside GL261 cells, were evaluated for their acute toxicity in immunocom-
promised male NOD/SCID mice [54]. The formulation of 20 mg/mL was administered
intraperitoneally (i.p.) in a single injection to mice at 100, 200, 300, 400 and 500 mg/kg and
their behavior was monitored and recorded for approximately 5 h. Subsequently, they were
weighed and observed for any sings of toxicity or routine alterations for a 15-day period.

The mice did not show any signs of sedation or abnormal behavior post-injection or
during the next days in which they were monitored. In addition, doses up to 300 mg/kg
led to no significant weight deviations during the study. After 10 days, one of the mice
injected with 300 mg/kg presented an ulcer at the injection site, which healed a few days
later. Concerning 400 and 500 mg/kg doses, those led to significant (over 10%) weight
losses, with the mice returning to normal after a few days, whereas one of the 400 mg/kg
doses was lethal. Skin ulcers were observed in these cases after 10 and 5 days for 400 and
500 mg/kg respectively, which also healed in the following days.

3. Materials and Methods
3.1. Materials

The saturated phospholipid DPPC, the phospholipid EPC and 1,2-dioleoyl-sn-glycero-
3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl) (ammonium salt) (Rhod-PE)
were purchased from Avanti Polar Lipids Inc. (Alabaster, AL, USA) and used without
further purification. Chloroform and other reagents were of analytical grade and pur-
chased from Sigma-Aldrich Chemical Co (St. Louis, MO, USA). The diblock copoly-
mer PDMAEMA-b-PLMA was synthesized in two different molar compositions, 70–30%
for PDMAEMA-b-PLMA 1 and 60–40% for PDMAEMA-b-PLMA 2, through reversible
addition-fragmentation chain-transfer (RAFT) polymerization. The synthesis has been pre-
viously described [22]. The Mw of the copolymers was equal to 6497 and 14,143 respectively.
The drug molecule TRAM-34 had an Mw of 344.84 and its synthesis has been previously
described [16].

3.2. Preparation of Chimeric Bilayers

Pure lipid and chimeric lipid-block copolymer bilayers with or without the drug
molecule TRAM-34 were prepared by mixing the appropriate amounts of EPC or DPPC,
PDMAEMA-b-PLMA 1 or 2 and TRAM-34 in CHCl3:MeOH 9:1 v/v solutions and subse-
quently evaporating the solvent under vacuum and heat conditions, using a rotary evapora-
tor (Rotavapor R-114, Buchi, Flawil, Switzerland). The molar ratio was between 9:0 and 9:1
for EPC:PDMAEMA-b-PLMA 1 or 2, 9:1.2 for DPPC:TRAM-34, 9:0.5 for DPPC:PDMAEMA-
b-PLMA 1 or 2, 9:0.5:1.75 for DPPC:PDMAEMA-b-PLMA 1:TRAM-34 and 9:0.5:2.45 for
DPPC:PDMAEMA-b-PLMA 2:TRAM-34. The polymer components were calculated based
on the phospholipid and the drug was calculated in all cases to result in the same mass
ratio between the drug and the total nanocarrier biomaterial, i.e., 6%. The vacuum applied
was −1 atm and temperature was 40 ◦C. The films were maintained under these conditions
until total evaporation and an additional 30 min and were then placed inside a desiccator,
for at least 24 h, in order to remove any remaining traces of solvent. The obtained laminated
bilayers were then hydrated and studied by means of FA and DSC.

3.3. Fluorescence Anisotropy/Polarization (FA)

The fluorescence anisotropy of two fluorescent probes, DPH and TMA-DPH, interact-
ing with EPC:PDMAEMA-b-PLMA 1 or 2 chimeric bilayers of molar ratios between 9:0
and 9:1, was measured by using a PerkinElmer LS-50B spectrofluorometer (Waltham, MA,
USA). For these measurements, the prepared bilayers (see Supplementary Materials) were
hydrated with PBS 0.15 M (pH = 7.4) to a final lipid concentration of 50 µM. Afterwards,
DPH or TMA-DPH was added at a concentration of 1 µM; the suspension was vortexed
and left to anneal for 5 min. For the measurements, the excitation wavelengths were
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348 nm and 358 nm and the emission wavelengths were 426 nm and 428 nm for DPH
and TMA-DPH, respectively. The slit width of the excitation monochromator was 2.5 nm
and that of the emission monochromator was 5.5 nm for DPH and 20 nm for TMA. The
fluorescence anisotropy values were calculated from Jablonski’s equation:

r =
IVV − GIVH
IVV + GVH

(1)

where r = fluorescence anisotropy, and IVV and IVH = the vertical and horizontal fluores-
cence intensities, respectively, to the vertical polarization of the excitation light beam used.
G = IVH/IVV (grating correction factor) corrects the polarization effects of the monochroma-
tor. The measurements were performed with Perkin Elmer software.

3.4. Differential Scanning Calorimetry (DSC)

DSC experiments were performed with a DSC822e (Mettler-Toledo, Schwerzenbach,
Switzerland) calorimeter, calibrated with pure indium (Tm = 156.6 ◦C). Sealed aluminum
crucibles of 40 µL capacity were used as sample holders. The prepared chimeric bilayers of
DPPC, PDMAEMA-b-PLMA 1 or 2 and TRAM-34 were analyzed by placing approximately
3.0 mg of each sample in a crucible, hydrating with 20 µL of PBS 0.15 M (pH = 7.4) or citrate
buffer 0.1 M (pH = 4.5), sealing and leaving samples to anneal for 30 min. Two heating-
cooling cycles and a third heating scan were performed, to ensure good reproducibility
of the data, with an empty aluminum crucible as reference. The temperature range was
between 20 ◦C and 60 ◦C, whereas the scanning rate was 5 ◦C/min. Before each cycle,
the samples were subjected to a constant temperature of 20 ◦C, to ensure equilibration.
The calorimetric data obtained (characteristic transition temperatures Tonset,m/s and Tm/s,
enthalpy changes ∆Hm/s and widths at half peak height of the Cp profiles ∆T1/2,m/s) were
analyzed with Mettler-Toledo STARe software. All transition enthalpies were normalized
per total biomaterial mass, including phospholipid and polymer, and were expressed as
negative values for endothermic processes (during heating) and as positive values for
exothermic ones (during cooling).

3.5. Preparation of Chimeric Nanocarriers

Chimeric liposomes of EPC, PDMAEMA-b-PLMA 1 or 2 and TRAM-34 were devel-
oped by utilizing the thin-film hydration method. Specifically, appropriate amounts of phos-
pholipid, copolymer and drug molecule were dissolved in CHCl3:MeOH 9:1 and then trans-
ferred into a round-bottom flask. The molar ratio between the biomaterials was 9:1.2 for
EPC:TRAM-34, 9:0.5 for EPC:PDMAEMA-b-PLMA 1 or 2, 9:0.5:1.75 for EPC:PDMAEMA-b-
PLMA 1:TRAM-34 and 9:0.5:2.45 for EPC:PDMAEMA-b-PLMA 2:TRAM-34. The drug was
calculated in all cases to result in the same drug–nanocarrier mass ratio, i.e., 6% w/w. The
flask was connected to a Laborota 4000 rotary evaporator (Heidolph, Schwabach, Germany),
a vacuum of −1 atm was applied and the thin films were formed by slow removal of the
solvent at 40 ◦C. Then, they were maintained under these conditions for 30 min and finally,
under vacuum for at least 24 h in a desiccator, to remove traces of solvent. Afterward,
they were hydrated with PBS 0.15 M (pH = 7.4), by slowly stirring and heating for 1 h
in a water bath, at 35 ◦C, above the phase transition temperature (Tm) of EPC. The final
biomaterial concentration of the chimeric systems was 20 mg/mL in each case, in respect
to the lipid and polymer, whereas the drug concentration was 1.2 mg/mL or 3.48 mM.
The resultant suspensions were subjected to extrusion through polycarbonate membranes,
utilizing an AE-10 liposome extruder (ATS Engineering Limited, Suzhou, China) to obtain
small unilamellar vesicles (SUVs). Specifically, the suspensions were subjected to 5 cycles
of extrusion through a 400-nm pore membrane, followed by 5 cycles of extrusion through
a 200-nm pore membrane, each. The resultant chimeric nanostructures were allowed to
anneal for 30 min before measuring them by means of light scattering.



Int. J. Mol. Sci. 2021, 22, 6271 16 of 22

3.6. Light Scattering Techniques

The size (hydrodynamic diameter, Dh), size distribution (PDI) and zeta potential (z-
pot) of the obtained nanoparticles were investigated through dynamic and electrophoretic
light scattering (DLS and ELS, respectively) with a Zetasizer Nano-ZS (Malvern Panalytical
Ltd., Malvern, UK) at a detection angle of 90◦ and were analyzed using the CONTIN
method (MALVERN software). For physicochemical properties after preparation, aliquots
of the suspensions were diluted 30-fold in PBS medium. Measurements were performed at
three different temperature values between 25 ◦C and 37 ◦C. In addition, an acidic protocol
was performed, by diluting samples 30-fold in citrate buffer 0.1 M (pH = 4.5), allowing
them to anneal for 20 min and measuring the size, size distribution and zeta potential at
25 ◦C. For the evaluation of interactions with serum proteins, static incubation experiments
were performed by mixing 100 µL of the prepared chimeric nanosystem dispersions with
100 µL of clarified FBS and incubating them for 30 min at 37 ◦C. Size, size distribution and
zeta potential were measured at 25 ◦C by diluting the liposome:FBS mixtures 15-fold in
PBS medium, to achieve the same biomaterial concentration as that of previous studies.
Finally, the physical/colloidal stability of empty chimeric nanocarriers was assessed after
1, 5, 10 and 15 days, by measuring their size and polydispersity.

3.7. Transmission Electron Microscopy (TEM)

The morphology of the chimeric nanocarriers was evaluated through negative staining
TEM (NS-TEM) analysis. The chimeric liposomes were diluted 60-fold with distilled H2O to
a final concentration of 333 µg/mL and 5 µL were placed on carbon-coated 200-mesh copper
grids (Ted Pella Inc., Redding, CA, USA). The samples were dried at room temperature
for 5 min and subsequently stained using uranyl acetate solution for less than 1 min. The
samples were examined in a JEM-1010 transmission electron microscope (JEOL Ltd., Tokyo,
Japan) at 80 kV. The developed films were scanned using a Perfection V700 PHOTO scanner
(Epson, Tokyo, Japan) at a resolution of 1200 dpi.

3.8. Drug Entrapment Efficiency % (EE%) and Release Studies

The UV-Vis spectrum of TRAM-34 was obtained with a UV-160A-Vis spectrophotome-
ter (Shimadzu, Kyoto, Japan) and an absorption peak at 261 nm was identified and chosen
for further quantification studies. Afterwards, a calibration curve was built in MeOH
for drug concentrations between 1 and 250 µg/mL, with correlation analysis leading to
R2 = 0.9999, utilizing Microsoft Excel (Redmond, WA, USA). The chimeric nanocarriers
with incorporated TRAM-34 (0.1 mL samples) were separated from non-incorporated
drug molecules by means of size exclusion chromatography (SEC) using a Sephadex-G75
column and utilizing HPLC-grade water as the mobile phase. Empty nanocarriers were
used as controls, of which the absorption was subtracted from that of drug-loaded ones, to
eliminate false positive results. The isolated liposomes with incorporated drug molecules
were diluted with MeOH to 3 mL and measured for absorption at 261 nm. Entrapment
efficiency (EE%) was calculated using the following equation:

IE =
Tram34(a f tercolumn)

Tram34(initial)
× 100 (2)

The release profile of TRAM-34 from EPC:PDMAEMA-b-PLMA 1 or 2 chimeric
nanocarriers was studied in four different pH conditions, PBS 0.15 M (pH = 7.4), citrate
buffer 0.1 M (pH = 6.5), citrate buffer 0.1 M (pH = 5.5) and citrate buffer 0.1 M (pH = 4.5), at
37 ◦C. Chimeric nanocarriers with TRAM-34 (0.4 mL samples) were placed in dialysis sacks
(molecular weight cut off 12,000; Sigma-Aldrich Chemical Co., St. Louis, MO, USA), which
were soaked overnight in the respective medium. Empty nanocarriers were used in all
cases as controls. The sacks were then inserted in 8 mL medium, inside a 50-mL falcon, in a
Memmert shaking water bath (Memmert GmbH + Co. KG, Schwabach, Germany) set at
37 ◦C. Aliquots of 0.5 mL were taken from the external solution at specific time intervals
and that volume was replaced with fresh medium, in order to maintain sink conditions.
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The amount of TRAM-34 released at various times, up to 3 h, was determined using the
Shimadzu UV-160A-Vis spectrophotometer at 261 nm, with the aid of the calibration curve:

Tram34 concentration
( ug

mL

)
=

absorbance− 0.0025
0.0018

(
R2 = 0.9999

)
(3)

3.9. Normal Cell Culture

Human embryonic kidney cells HEK-293 (ATCC, Manassas, VA, USA) were grown
in DMEM-Glutamax (Gibco, Thermo Fisher Scientific Inc., Waltham, MA, USA) with 10%
heat-inactivated FBS (HyClone, Logan, UT, USA). Cells were routinely maintained on
plastic tissue culture flasks and plates (Sarstedt Ltd., Spata, Greece) at 37 ◦C in a humidified
atmosphere containing 5% CO2/95% air and subcultured twice a week after 80% confluency
was reached.

3.10. Normal Cell Viability In Vitro

The toxicity of the chimeric nanocarriers was tested on the HEK-293 human em-
bryonic kidney cell line, utilizing the AlamarBlue®/resazurin assay. In the assay, blue
non-fluorescent resazurin is reduced to pink, fluorescent resorufin, which is a metabolic
response of living cells. This resazurin conversion determines the cell viability [55]. The
cells were seeded on a black 96-well plate at a density of 10,000 per well. After 24 h
incubation, 20 µL of resazurin solution (1 mg/mL in PBS) was added to each well, and
the cells were incubated for 2 h at 37 ◦C in the dark. Then, resorufin fluorescence was
read at λex = 530 nm and λem = 590 nm using a fluorescence microplate reader (Fluoroskan,
Thermo Fisher Scientific Inc., Waltham, MA, USA). The cell viability was presented as
a percentage of the fluorescence obtained for untreated control cells treated by 1× PBS.
Viability was estimated using the following formula:

Viability =
A
Ac
× 100 (4)

3.11. Confocal Laser Scanning Microscopy (CLSM)

Cell uptake study was performed on the HEK-293 human embryonic kidney cell line,
to qualitatively study the internalization of chimeric liposomes dyed with Rhod-PE at
an EPC:Rhod-PE molar ratio of 9:0.03. Briefly, cells were plated 24 h before the start of
the experiment in 6-well plates containing sterile cover slips (10,000 cells/well). After
equilibration, cell uptake of the chimeric liposomes was achieved by adding the samples at
a nanocarrier concentration of 30 µg/mL and incubating the cells at 37 ◦C for 24 h. The cells
were then washed three times with PBS (pH 7.4) to eliminate any excess materials and fixed.
Finally, the slides were washed twice with PBS and then examined with a TCS SP8 confocal
system with LAS 2.0.215022 software (Leica Microsystems, Wetzlar, Germany) equipped
with an HC PL APO CS2 63×/OIL objective. The 540-nm supercontinuum white light laser
(WLL) (10% intensity) was used as an excitation light source of rhodamine. The emission
spectrum was collected at the range of 572–777 nm by means of the conventional detector
(PMT). Moreover, transmitted light images were also collected in the same sequence. The
confocal scans were performed bidirectionally at a speed of 400 Hz. The fluorescence
spectrum was registered from the single confocal plane (pinhole 1.0 AU). Images were
collected in logical size format XY 1024 × 1024 pixels, array 0.18 × 0.18 µm. The line
average was set at 4 to improve image quality.

3.12. Glioma Cell Culture

The GL261 glioma cell line (RRID:CVCL_Y003) was cultured in DMEM, supple-
mented with 20% heat-inactivated FBS, 100 IU/mL penicillin G, 100 µg/mL streptomycin,
2.5 µg/mL amphotericin B, 2 mM glutamine and 1 mM sodium pyruvate.
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3.13. Glioma Cell Viability In Vitro

To assess the viability of cells exposed to different concentrations of drug-loaded
chimeric nanocarriers, GL261 glioma cells (13× 104/cm2) were treated with empty chimeric
nanocarriers EPC:PDMAEMA-b-PLMA 1 or 2 (30 µg/mL) or with TRAM-34-loaded ones
(nanocarrier 30 µg/mL, TRAM-34 5 µM) for 24, 48 and 72 h. Cell viability was determined
by means of the MTT assay. Results are expressed as percentages of cell survival, with
untreated cells presented separately for each timepoint.

3.14. Fluorescence Microscopy (FM)

After 24 h of incubation with Rhod-PE-labelled chimeric nanocarriers, GL261 glioma
cells were fixed in 4% formaldehyde, washed with Hoechst (1:1000) for 1 h at room
temperature for nucleus visualization and analyzed by means of fluorescence microscopy.
Images were digitized using a CoolSNAP camera (Photometrics, Tucson, AZ, USA) coupled
to an ECLIPSE Ti-S microscope (Nikon, Tokyo, Japan) and processed using MetaMorph
7.6.5.0 image analysis software (Molecular Devices, San Jose, CA, USA).

3.15. In Vivo Toxicity

For the in vivo toxicity study, NOD.CB17-Prkdcscid/J (NOD/SCID) mice, purchased
from Jackson Laboratory (The Jackson Laboratory, Bar Harbor, ME, USA), were used. The
mouse colony was maintained in a pathogen-free environment in type IIL cages. Male
mice, 6–8 weeks old, were used in the studies described here. All animals were kept
under specific pathogen-free (SPF) conditions at the animal facility of the Department
of Pharmacology, Faculty of Medicine, University of Thessaly (EL42-BIO_Exp03), in a
climate-regulated environment (21 ± 1 ◦C; 50–55% relative humidity), under a 12 h/12 h
light/dark circle (lights on at 7:00 AM) and allowed access to food and water ad libitum.
Toxicity experiments were performed following the guidelines of the USA National Cancer
Institute [56–58]. Chimeric liposomes were administered intraperitoneally (i.p.) in the
lateral aspect of the lower left quadrant. Acute toxicity studies were carried out for the
determination of the single-dose effect of chimeric liposomes. The administered dose was
100, 200, 300, 400 or 500 mg/kg and the effect was observed for 15 days (n = 2 mice/dose).
For the needs of the experiment the observed and recorded parameters were mortality,
body weight loss and behavioral changes.

3.16. Statistical Analysis

Results are shown as mean value ± standard deviation (SD) of three independent
experiments (n = 3). The in vitro toxicity of the chimeric nanosystems on HEK-293 cells
comes from three samples (n = 3), whereas the in vitro antiproliferative effect of chimeric
nanosystems with drug molecules on GL261 glioma cells was the result of four to seven
samples (n = 4–7). All data were analyzed through one-way ANOVA versus the control
and only p-values < 0.01 (**) were considered statistically significant.

4. Conclusions

The treatment of glioblastoma may be achieved by utilizing biocompatible and
functional aDDnSs, such as stimuli-responsive chimeric nanocarriers that will deliver
antiglioma agents to the target site and enable their penetration through the glioma cell
membrane. In the present investigation, the incorporation of amphiphilic diblock copoly-
mers inside EPC membranes and liposomes was achieved, leading to pH-responsive
chimeric nanoparticles, and their evaluation through various techniques was conducted.
These included membrane fluidity measurements, physicochemical characterization, pH-
responsiveness assessments, the evaluation of interactions with serum proteins and mor-
phology imaging. Through these methods, the thermodynamic, biophysical, physico-
chemical and morphological properties of these chimeric nanocarriers were delineated. In
addition, the in vitro toxicity on normal-like cells demonstrated their biocompatibility and
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the absence of toxic effects, whereas cellular uptake studies suggested that they penetrate
the cell membrane and do not reach the nucleus.

The developed chimeric nanosystems were also utilized as carriers for the antiglioma
molecule TRAM-34, presenting a good entrapment efficiency. Combined DSC, DLS and
drug release data suggest that the drug release occurs in acidic pH, without alteration of
the nanocarrier’s physicochemical properties. The release tests in different pH conditions
resulted in different release rates and final released amounts of the drug for physiological
and acidic pH values, also depending on the properties of the incorporated copolymer. Al-
though the in vitro efficacy of the drug-loaded nanocarriers was limited, EPC:PDMAEMA-
b-PLMA 1 liposomes with TRAM-34 were found to be slightly more effective against GL261
glioma cells and both nanocarriers showed good internalization by the tumor cells after 24
h. Their fine physicochemical properties and colloidal stability, combined with the high
endocytosis and potent drug release under acidic conditions, render these pH-responsive
nanocarriers interesting as drug delivery systems of TRAM-34 or other drug molecules to
glioma cells.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22126271/s1.

Author Contributions: Conceptualization, N.N., N.P., M.I., K.M., C.L., S.P., K.D., M.B. and C.D.;
methodology, N.N., N.P., M.I., K.M., C.L. and K.D.; validation, N.N., E.S., M.K., K.M. and S.G.; formal
analysis, N.N. and S.G.; investigation, N.N., N.P., E.S., V.C., M.K., J.K., Ł.B. and S.G.; resources,
M.I., K.M., Ł.B., C.L., S.P., K.D., M.B. and C.D.; writing—original draft preparation, N.N.; writing—
review and editing, N.P., E.S., V.C., M.K., J.K., M.I., K.M., Ł.B., S.G., C.L., S.P., K.D., M.B. and C.D.;
visualization, N.N., Ł.B. and S.G.; supervision, C.L., S.P., K.D., M.B. and C.D.; project administration,
N.N., N.P., K.M. and C.D.; funding acquisition, C.L., M.B. and C.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Hellenic Foundation for Research and Innovation (HFRI)
and the General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship
grant to N.N. (GA. no. 392) and by the Polish National Agency for Academic Exchange (NAWA
PROM), under the Project Named “International scholarship exchange of PhD Candidates and
Academic Staff”. The work was also funded by the GSRT (N.P., E.S., V.C., S.P., K.D., C.D.) and the
Italian Ministry of Health (S.G., C.L.), under the framework of the Era-Net EURONANOMED II
European Research project “NANOGLIO”.

Institutional Review Board Statement: The handling and experimentation of the animals were
conducted in accordance with the Greek laws (PD 56/2013 and Circular 2215/117550/2013), the
guidelines of the European Union (2013/63/EU) and the guidelines of the Declaration of Helsinki
under a licensed protocol approved by the IACUC and Greek authorities (License no. 5542/228006,
IACUC; N. Pitsikas, A. Zacharioudaki, J. Chloptsios and A. Konstantinidis).

Acknowledgments: The authors would like to express their gratitude to Heike Wulff from the
Department of Pharmacology, University of California, for the provision of the drug molecule
TRAM-34, as well as her valuable comments on this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El-Sawy, H.S.; Al-Abd, A.M.; Ahmed, T.A.; El-Say, K.M.; Torchilin, V.P. Stimuli-responsive nano-architecture drug-delivery

systems to solid tumor micromilieu: Past, present, and future perspectives. ACS Nano 2018, 12, 10636–10664. [CrossRef] [PubMed]
2. Naziris, N.; Pippa, N.; Pispas, S.; Demetzos, C. Stimuli-responsive drug delivery nanosystems: From bench to clinic. Curr.

Nanomed. 2016, 6, 1–20. [CrossRef]
3. Demetzos, C.; Pippa, N. Advanced drug delivery nanosystems (aDDnSs): A mini-review. Drug Deliv. 2014, 21, 250–257. [CrossRef]

[PubMed]
4. Wu, W.; Luo, L.; Wang, Y.; Wu, Q.; Dai, H.B.; Li, J.S.; Durkan, C.; Wang, N.; Wang, G.X. Endogenous pH-responsive nanoparticles

with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018, 8, 3038–3058. [CrossRef]
[PubMed]

https://www.mdpi.com/article/10.3390/ijms22126271/s1
https://www.mdpi.com/article/10.3390/ijms22126271/s1
http://doi.org/10.1021/acsnano.8b06104
http://www.ncbi.nlm.nih.gov/pubmed/30335963
http://doi.org/10.2174/2468187306666160712232449
http://doi.org/10.3109/10717544.2013.844745
http://www.ncbi.nlm.nih.gov/pubmed/24134707
http://doi.org/10.7150/thno.23459
http://www.ncbi.nlm.nih.gov/pubmed/29896301


Int. J. Mol. Sci. 2021, 22, 6271 20 of 22

5. van Tellingen, O.; Yetkin-Arik, B.; de Gooijer, M.C.; Wesseling, P.; Wurdinger, T.; de Vries, H.E. Overcoming the blood-brain
tumor barrier for effective glioblastoma treatment. Drug Resist. Updat. 2015, 19, 1–12. [CrossRef] [PubMed]

6. Allhenn, D.; Boushehri, M.A.; Lamprecht, A. Drug delivery strategies for the treatment of malignant gliomas. Int. J. Pharm. 2012,
436, 299–310. [CrossRef]

7. Ohya, S.; Kito, H. Ca2+-activated K+ channel KCa3.1 as a therapeutic target for immune disorders. Biol. Pharm. Bull. 2018, 41,
1158–1163. [CrossRef]

8. Catacuzzeno, L.; Fioretti, B.; Franciolini, F. Expression and role of the intermediate-conductance calcium-activated potassium
channel KCa3.1 in glioblastoma. J. Signal Transduct. 2012, 2012, 421564. [CrossRef] [PubMed]

9. Ritchie, M.F.; Zhou, Y.; Soboloff, J. WT1/EGR1-mediated control of STIM1 expression and function in cancer cells. Front. Biosci.
2011, 16, 2402–2415. [CrossRef] [PubMed]

10. D’Alessandro, G.; Catalano, M.; Sciaccaluga, M.; Chece, G.; Cipriani, R.; Rosito, M.; Grimaldi, A.; Lauro, C.; Cantore, G.; Santoro,
A.; et al. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis. 2013, 4, e773. [CrossRef]
[PubMed]

11. D’Alessandro, G.; Grimaldi, A.; Chece, G.; Porzia, A.; Esposito, V.; Santoro, A.; Salvati, M.; Mainiero, F.; Ragozzino, D.; Di
Angelantonio, S.; et al. KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment. Oncotarget 2016, 7,
30781–30796. [CrossRef] [PubMed]

12. Grimaldi, A.; D’Alessandro, G.; Golia, M.T.; Grössinger, E.M.; Di Angelantonio, S.; Ragozzino, D.; Santoro, A.; Esposito, V.; Wulff,
H.; Catalano, M.; et al. KCa3.1 inhibition switches the phenotype of glioma-infiltrating microglia/macrophages. Cell Death Dis.
2016, 7, e2174. [CrossRef] [PubMed]

13. Ruggieri, P.; Mangino, G.; Fioretti, B.; Catacuzzeno, L.; Puca, R.; Ponti, D.; Miscusi, M.; Franciolini, F.; Ragona, G.; Calogero,
A. The inhibition of KCa3.1 channels activity reduces cell motility in glioblastoma derived cancer stem cells. PLoS ONE 2012,
7, e47825. [CrossRef] [PubMed]

14. Agarwal, J.J.; Zhu, Y.; Zhang, Q.Y.; Mongin, A.A.; Hough, L.B. TRAM-34, a putatively selective blocker of intermediate-
conductance, calcium-activated potassium channels, inhibits cytochrome P450 activity. PLoS ONE 2013, 8, e63028. [CrossRef]

15. Wulff, H.; Gutman, G.A.; Cahalan, M.D.; Chandy, K.G. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate
conductance calcium-activated potassium channel, IKCa1. J. Biol. Chem. 2001, 276, 32040–32045. [CrossRef]

16. Wulff, H.; Miller, M.J.; Hansel, W.; Grissmer, S.; Cahalan, M.D.; Chandy, K.G. Design of a potent and selective inhibitor of the
intermediate-conductance Ca2+-activated K+ channel, IKCa1: A potential immunosuppressant. Proc. Natl. Acad. Sci. USA 2000,
97, 8151–8156. [CrossRef]

17. Xu, H.; Paxton, J.W.; Wu, Z. Enhanced pH-responsiveness, cellular trafficking, cytotoxicity and long-circulation of PEGylated
liposomes with post-insertion technique using gemcitabine as a model drug. Pharm. Res. 2015, 32, 2428–2438. [CrossRef]

18. Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal formulations in clinical use: An updated review. Pharmaceutics
2017, 9, 12. [CrossRef]

19. Chang, H.I.; Yeh, M.K. Clinical development of liposome-based drugs: Formulation, characterization, and therapeutic efficacy.
Int. J. Nanomed. 2012, 7, 49–60.

20. Bruggemann, E.P.; Melchior, D.L. Alterations in the organization of phosphatidylcholine/cholesterol bilayers by tetrahydro-
cannabinol. J. Biol. Chem. 1983, 258, 8298–8303. [CrossRef]

21. Naziris, N.; Pippa, N.; Chrysostomou, V.; Pispas, S.; Demetzos, C.; Libera, M.; Trzebicka, B. Morphological diversity of block
copolymer/lipid chimeric nanostructures. J. Nanopart. Res. 2017, 19, 347–357. [CrossRef]

22. Naziris, N.; Pippa, N.; Stellas, D.; Chrysostomou, V.; Pispas, S.; Demetzos, C.; Libera, M.; Trzebicka, B. Development and
evaluation of stimuli-responsive chimeric nanostructures. AAPS PharmSciTech 2018, 19, 2971–2989. [CrossRef]

23. Zhang, Y.; Maji, S.; Greiner, A. PDMAEMA based gene delivery materials. Mater. Today 2012, 15, 388–393.
24. Samsonova, O.; Pfeiffer, C.; Hellmund, M.; Merkel, O.M.; Kissel, T. Low molecular weight pDMAEMA-block-pHEMA block-

copolymers synthesized via RAFT-polymerization: Potential non-viral gene delivery agents? Polymer 2011, 3, 693–718. [CrossRef]
25. Zengin, A.; Karakose, G.; Caykara, T. Poly(2-(dimethylamino)ethyl methacrylate) brushes fabricated by surface-mediated RAFT

polymerization and their response to pH. Eur. Polym. J. 2013, 49, 3350–3358. [CrossRef]
26. Ionov, M.; Klajnert, B.; Gardikis, K.; Hatziantoniou, S.; Palecz, B.; Salakhutdinov, B.; Cladera, J.; Zamaraeva, M.; Demetzos, C.;

Bryszewska, M. Effect of amyloid beta peptides Aβ1-28 and Aβ25-40 on model lipid membranes. J. Therm. Anal. Calorim. 2010,
99, 741–747. [CrossRef]

27. Wei, X.; Cohen, R.; Barenholz, Y. Insights into composition/structure/function relationships of Doxil® gained from “high-
sensitivity” differential scanning calorimetry. Eur. J. Pharm. Biopharm. 2016, 104, 260–270. [CrossRef]

28. Naziris, N.; Skandalis, A.; Forys, A.; Trzebicka, B.; Fessas, D.; Pispas, S.; Demetzos, C. A thermal analysis and physicochemical
study on thermoresponsive chimeric liposomal nanosystems. J. Therm. Anal. Calorim. 2020, 141, 751–766. [CrossRef]

29. Zhang, B.; Song, Y.; Wang, T.; Yang, S.; Zhang, J.; Liu, Y.; Zhang, N.; Garg, S. Efficient co-delivery of immiscible hy-
drophilic/hydrophobic chemotherapeutics by lipid emulsions for improved treatment of cancer. Int. J. Nanomed. 2017, 12,
2871–2886. [CrossRef] [PubMed]

http://doi.org/10.1016/j.drup.2015.02.002
http://www.ncbi.nlm.nih.gov/pubmed/25791797
http://doi.org/10.1016/j.ijpharm.2012.06.025
http://doi.org/10.1248/bpb.b18-00078
http://doi.org/10.1155/2012/421564
http://www.ncbi.nlm.nih.gov/pubmed/22675627
http://doi.org/10.2741/3862
http://www.ncbi.nlm.nih.gov/pubmed/21622185
http://doi.org/10.1038/cddis.2013.279
http://www.ncbi.nlm.nih.gov/pubmed/23949222
http://doi.org/10.18632/oncotarget.8761
http://www.ncbi.nlm.nih.gov/pubmed/27096953
http://doi.org/10.1038/cddis.2016.73
http://www.ncbi.nlm.nih.gov/pubmed/27054329
http://doi.org/10.1371/journal.pone.0047825
http://www.ncbi.nlm.nih.gov/pubmed/23110108
http://doi.org/10.1371/journal.pone.0063028
http://doi.org/10.1074/jbc.M105231200
http://doi.org/10.1073/pnas.97.14.8151
http://doi.org/10.1007/s11095-015-1635-0
http://doi.org/10.3390/pharmaceutics9020012
http://doi.org/10.1016/S0021-9258(20)82064-X
http://doi.org/10.1007/s11051-017-4021-5
http://doi.org/10.1208/s12249-018-1112-2
http://doi.org/10.3390/polym3020693
http://doi.org/10.1016/j.eurpolymj.2013.07.005
http://doi.org/10.1007/s10973-009-0405-9
http://doi.org/10.1016/j.ejpb.2016.04.011
http://doi.org/10.1007/s10973-019-09049-z
http://doi.org/10.2147/IJN.S129091
http://www.ncbi.nlm.nih.gov/pubmed/28435264


Int. J. Mol. Sci. 2021, 22, 6271 21 of 22

30. Demetzos, C. Differential Scanning Calorimetry (DSC): A tool to study the thermal behavior of lipid bilayers and liposomal
stability. J. Liposome Res. 2008, 18, 159–173. [CrossRef] [PubMed]

31. Konstantinidi, A.; Naziris, N.; Chountoulesi, M.; Kiriakidi, S.; Sartori, B.; Kolokouris, D.; Amentisch, H.; Mali, G.; Ntountaniotis,
D.; Demetzos, C.; et al. Comparative perturbation effects exerted by the influenza A M2 WT protein inhibitors amantadine and
the spiro[pyrrolidine-2,2′-adamantane] variant AK13 to membrane bilayers studied using biophysical experiments and molecular
dynamics simulations. J. Phys. Chem. B 2018, 122, 9877–9895. [CrossRef]

32. Tribet, C.; Vial, F. Flexible macromolecules attached to lipid bilayers: Impact on fluidity, curvature, permeability and stability of
the membranes. Soft Matter 2008, 4, 68–81. [CrossRef]

33. Roy, B.; Guha, P.; Bhattarai, R.; Nahak, P.; Karmakar, G.; Chettri, P.; Panda, A.K. Influence of lipid composition, pH, and
temperature on physicochemical properties of liposomes with curcumin as model drug. J. Oleo Sci. 2016, 65, 399–411. [CrossRef]

34. Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of nanoparticles with proteins: Relationto bio-reactivity of the nanoparticle. J.
Nanobiotechnol. 2013, 11, 26–37. [CrossRef]

35. Böhme, U.; Scheler, U. Effective charge of bovine serum albumin determined by electrophoresis NMR. Chem. Phys. Letters 2007,
435, 342–345. [CrossRef]

36. Chou, M.J.; Yu, H.Y.; Hsia, J.C.; Chen, Y.H.; Hung, T.T.; Chao, H.M.; Chern, E.; Huang, Y.Y. Highly efficient intracellular protein
delivery by cationic polyethyleneimine-modified gelatin nanoparticles. Materials 2018, 11, 301. [CrossRef] [PubMed]

37. Ruozi, B.; Belletti, D.; Tombesi, A.; Tosi, G.; Bondioli, L.; Forni, F.; Vandelli, M.A. AFM, ESEM, TEM, and CLSM in liposomal
characterization: A comparative study. Int. J. Nanomed. 2011, 6, 557–563. [CrossRef]

38. Franken, L.E.; Boekema, E.J.; Stuart, M.C.A. Transmission electron microscopy as a tool for the characterization of soft materials:
Application and interpretation. Adv. Sci. 2017, 4, 1600476. [CrossRef] [PubMed]

39. Popplewell, J.F.; Swann, M.J.; Freeman, N.J.; McDonnell, C.; Ford, R.C. Quantifying the effects of melittin on liposomes. Biochim.
Biophys. Acta. 2007, 1768, 13–20. [CrossRef] [PubMed]

40. Hong, S.S.; Choi, J.Y.; Kim, J.O.; Lee, M.K.; Kim, S.H.; Lim, S.J. Development of paclitaxel-loaded liposomal nanocarrier stabilized
by triglyceride incorporation. Int. J. Nanomed. 2016, 11, 4465–4477.

41. Ruysschaert, T.; Marque, A.; Duteyrat, J.L.; Lesieur, S.; Winterhalter, M.; Fournier, D. Liposome retention in size exclusion
chromatography. BMC Biotechnol. 2005, 5, 11. [CrossRef]

42. Fahr, A.; van Hoogevest, P.; Kuntsche, J.; Leigh, M.L. Lipophilic drug transfer between liposomal and biological membranes:
What does it mean for parenteral and oral drug delivery? J. Liposome Res. 2006, 16, 281–301. [CrossRef]

43. Pippa, N.; Meristoudi, A.; Pispas, S.; Demetzos, C. Temperature-dependent drug release from DPPC:C12H25-PNIPAM-COOH
liposomes: Control of the drug loading/release by modulation of the nanocarriers’ components. Int. J. Pharm. 2015, 485, 374–382.
[CrossRef] [PubMed]

44. Naziris, N.; Pippa, N.; Meristoudi, A.; Pispas, S.; Demetzos, C. Design and development of pH-responsive HSPC:C12H25-PAA
chimeric liposomes. J. Liposome Res. 2017, 27, 108–117. [CrossRef] [PubMed]

45. Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran.
Biomed. J. 2016, 20, 1–11. [PubMed]

46. Angius, F.; Floris, A. Liposomes and MTT cell viability assay: An incompatible affair. Toxicol. In Vitro 2015, 29, 314–319. [CrossRef]
47. Roursgaard, M.; Knudsen, K.B.; Northeved, H.; Persson, M.; Christensen, T.; Kumar, P.E.K.; Permin, A.; Andresen, T.L.; Gjetting,

T.; Lykkesfeldt, J.; et al. In vitro toxicity of cationic micelles and liposomes in cultured human hepatocyte (HepG2) and lung
epithelial (A549) cell lines. Toxicol. In Vitro 2016, 36, 164–171. [CrossRef] [PubMed]

48. Bitoque, D.B.; Simão, S.; Oliveira, A.V.; Machado, S.; Duran, M.R.; Lopes, E.; da Costa, A.M.; Silva, G.A. Efficiency of RAFT-
synthesized PDMAEMA in gene transfer to the retina. J. Tissue Eng. Regen. Med. 2017, 11, 265–275. [CrossRef]

49. Kang, J.H.; Jang, W.Y.; Ko, Y.T. The effect of surface charges on the cellular uptake of liposomes investigated by live cell imaging.
Pharm. Res. 2017, 34, 704–717. [CrossRef] [PubMed]

50. Xiao, G.; Gan, L.S. Receptor-mediated endocytosis and brain delivery of therapeutic biologics. Int. J. Cell Biol. 2013, 2013, 703545.
[CrossRef]

51. Goren, D.; Horowitz, A.T.; Tzemach, D.; Tarshish, M.; Zalipsky, S.; Gabizon, A. Nuclear delivery of doxorubicin via folate-targeted
liposomes with bypass of multidrug-resistance efflux pump. Clin. Cancer Res. 2000, 6, 1949–1957.

52. Liu, X.; Chen, Y.; Li, H.; Huang, N.; Jin, Q.; Ren, K.; Ji, J. Enhanced retention and cellular uptake of nanoparticles in tumors by
controlling their aggregation behavior. ACS Nano 2013, 7, 6244–6257. [CrossRef] [PubMed]

53. Mohr, C.J.; Steudel, F.A.; Gross, D.; Ruth, P.; Lo, W.Y.; Hoppe, R.; Schroth, W.; Brauch, H.; Huber, S.M.; Lukowski, R. Cancer-
associated intermediate conductance Ca2+-activated K+ channel KCa3.1. Cancers 2019, 11, 109. [CrossRef] [PubMed]

54. Iatrou, H.; Dimas, K.; Gkikas, M.; Tsimblouli, C.; Sofianopoulou, S. Polymersomes from polypeptide containing triblock Co- and
terpolymers for drug delivery against pancreatic cancer: Asymmetry of the external hydrophilic blocks. Macromol. Biosci. 2014,
14, 1222–1238. [CrossRef] [PubMed]

55. O’Brien, J.; Willson, J.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of
mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [CrossRef] [PubMed]

56. National Cancer Institute. 2015. Available online: https://dtp.cancer.gov/organization/btb/acute_toxicity.htm (accessed on
10 January 2021).

http://doi.org/10.1080/08982100802310261
http://www.ncbi.nlm.nih.gov/pubmed/18770070
http://doi.org/10.1021/acs.jpcb.8b07071
http://doi.org/10.1039/B708431P
http://doi.org/10.5650/jos.ess15229
http://doi.org/10.1186/1477-3155-11-26
http://doi.org/10.1016/j.cplett.2006.12.068
http://doi.org/10.3390/ma11020301
http://www.ncbi.nlm.nih.gov/pubmed/29462858
http://doi.org/10.2147/IJN.S14615
http://doi.org/10.1002/advs.201600476
http://www.ncbi.nlm.nih.gov/pubmed/28546914
http://doi.org/10.1016/j.bbamem.2006.05.016
http://www.ncbi.nlm.nih.gov/pubmed/17092481
http://doi.org/10.1186/1472-6750-5-11
http://doi.org/10.1080/08982100600848702
http://doi.org/10.1016/j.ijpharm.2015.03.014
http://www.ncbi.nlm.nih.gov/pubmed/25776453
http://doi.org/10.3109/08982104.2016.1166512
http://www.ncbi.nlm.nih.gov/pubmed/27558454
http://www.ncbi.nlm.nih.gov/pubmed/26286636
http://doi.org/10.1016/j.tiv.2014.11.009
http://doi.org/10.1016/j.tiv.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27497994
http://doi.org/10.1002/term.1909
http://doi.org/10.1007/s11095-017-2097-3
http://www.ncbi.nlm.nih.gov/pubmed/28078484
http://doi.org/10.1155/2013/703545
http://doi.org/10.1021/nn402201w
http://www.ncbi.nlm.nih.gov/pubmed/23799860
http://doi.org/10.3390/cancers11010109
http://www.ncbi.nlm.nih.gov/pubmed/30658505
http://doi.org/10.1002/mabi.201400137
http://www.ncbi.nlm.nih.gov/pubmed/24838730
http://doi.org/10.1046/j.1432-1327.2000.01606.x
http://www.ncbi.nlm.nih.gov/pubmed/10951200
https://dtp.cancer.gov/organization/btb/acute_toxicity.htm


Int. J. Mol. Sci. 2021, 22, 6271 22 of 22

57. Naziris, N.; Saitta, F.; Chrysostomou, V.; Libera, M.; Trzebicka, B.; Fessas, D.; Pispas, S.; Demetzos, C. pH-responsive chimeric
liposomes: From nanotechnology to biological assessment. Int. J. Pharm. 2020, 574, 118849. [CrossRef]

58. Bilalis, P.; Skoulas, D.; Karatzas, A.; Marakis, J.; Stamogiannos, A.; Tsimblouli, C.; Sereti, E.; Stratikos, E.; Dimas, K.; Vlassopoulos,
D.; et al. Self-healing pH- and enzyme stimuli-responsive hydrogels for targeted delivery of gemcitabine to treat pancreatic
cancer. Biomacromolecules 2018, 19, 3840–3852. [CrossRef]

http://doi.org/10.1016/j.ijpharm.2019.118849
http://doi.org/10.1021/acs.biomac.8b00959

	Introduction 
	Results and Discussion 
	Membrane Fluidity of Chimeric Bilayers 
	Thermotropic Behavior of Chimeric Bilayers with TRAM-34 
	Physicochemical Characteristics, Stimuli-Responsiveness and Protein Interactions of Chimeric Nanocarriers 
	Drug Entrapment Efficiency % (EE%) and Release in Acidic Conditions 
	In Vitro Toxicity and Uptake of Chimeric Nanocarriers by HEK-293 Cells 
	In Vitro Antiproliferative Effect and Uptake of Drug-Loaded Chimeric Nanocarriers by GL261 Cells 
	In Vivo Toxicity of Chimeric Nanocarriers 

	Materials and Methods 
	Materials 
	Preparation of Chimeric Bilayers 
	Fluorescence Anisotropy/Polarization (FA) 
	Differential Scanning Calorimetry (DSC) 
	Preparation of Chimeric Nanocarriers 
	Light Scattering Techniques 
	Transmission Electron Microscopy (TEM) 
	Drug Entrapment Efficiency % (EE%) and Release Studies 
	Normal Cell Culture 
	Normal Cell Viability In Vitro 
	Confocal Laser Scanning Microscopy (CLSM) 
	Glioma Cell Culture 
	Glioma Cell Viability In Vitro 
	Fluorescence Microscopy (FM) 
	In Vivo Toxicity 
	Statistical Analysis 

	Conclusions 
	References

