196 research outputs found

    Biowaste management in Italy: Challenges and perspectives

    Get PDF
    The aim of this work is the development of a methodology for the technical and environmental assessment of biowaste valorization in 2G biorefineries. Italy was chosen as case study, considering years 2016–2017. Approach: the Italian context was evaluated through the following key parameters: Gross domestic power, climate, demography, and population density distribution described the Italian framework. The four most abundant biowaste categories were defined through their amounts and geo-localization: wastewater and sewage sludge (WSS, 4.06 Mt/y), organic fraction of municipal solid waste (OFMSW, 1.7 Mt/y), agricultural livestock waste (ALW, 5.7 Mt/y), and waste deriving from the food industry (FIW, 2.6 Mt/y). The geo-localization and quantitative evaluations of the available biowaste amounts were aimed at defining the dimension and localization of the biorefinery plant and at optimizing supply and transport chains, while the qualitative characteristic were aimed to evaluate the most promising process among thermo-valorization (TH) and anaerobic digestion (AD). Results: All considered biowastes were appropriate for biorefinery processes, since carbon content exceeds 40% and the carbon–nitrogen ratio was between 10 and 30. All biowaste categories were evaluated as feedstocks for two biorefinery processes: anaerobic digestion (AD) and thermo-valorization (TH) with energy recovery. Compared to TH, AD achieved in all cases the best performances in terms of produced energy and avoided CO2 emissions. The primary energy production of AD and TH for WSS, OFMSW, ALW, and FIW were respectively: 7.89 vs. 2.4 kWh/kg; 8.7 vs. 2.6 kWh/kg; 10.85 vs. 5.5 kWh/kg; and 12.5 vs. 7.8 kWh/kg. The main findings of this work were: the adoption of AD was technically more suitable than TH; AD increased the avoided CO2 emissions of 10%–89.9% depending on biowaste category

    One-Dimensional Dispersive Magnon Excitation in the Frustrated Spin-2 Chain System Ca3Co2O6

    Full text link
    Using inelastic neutron scattering, we have observed a quasi-one-dimensional dispersive magnetic excitation in the frustrated triangular-lattice spin-2 chain oxide Ca3Co2O6. At the lowest temperature (T = 1.5 K), this magnon is characterized by a large zone-center spin gap of ~27 meV, which we attribute to the large single-ion anisotropy, and disperses along the chain direction with a bandwidth of ~3.5 meV. In the directions orthogonal to the chains, no measurable dispersion was found. With increasing temperature, the magnon dispersion shifts towards lower energies, yet persists up to at least 150 K, indicating that the ferromagnetic intrachain correlations survive up to 6 times higher temperatures than the long-range interchain antiferromagnetic order. The magnon dispersion can be well described within the predictions of linear spin-wave theory for a system of weakly coupled ferromagnetic chains with large single-ion anisotropy, enabling the direct quantitative determination of the magnetic exchange and anisotropy parameters.Comment: 7 pages, 6 figures including one animatio

    Spin pseudogap in Ni-doped SrCuO2

    Full text link
    The S=1/2 spin chain material SrCuO2 doped with 1% S=1 Ni-impurities is studied by inelastic neutron scattering. At low temperatures, the spectrum shows a pseudogap \Delta ~ 8 meV, absent in the parent compound, and not related to any structural phase transition. The pseudogap is shown to be a generic feature of quantum spin chains with dilute defects. A simple model based on this idea quantitatively accounts for the exprimental data measured in the temperature range 2-300 K, and allows to represent the momentum-integrated dynamic structure factor in a universal scaling form.Comment: 5 pages, 3 figure

    Similar zone-center gaps in the low-energy spin-wave spectra of NaFeAs and BaFe2As2

    Full text link
    We report results of inelastic-neutron-scattering measurements of low-energy spin-wave excitations in two structurally distinct families of iron-pnictide parent compounds: Na(1-{\delta})FeAs and BaFe2As2. Despite their very different values of the ordered magnetic moment and N\'eel temperatures, T_N, in the antiferromagnetic state both compounds exhibit similar spin gaps of the order of 10 meV at the magnetic Brillouin-zone center. The gap opens sharply below T_N, with no signatures of a precursor gap at temperatures between the orthorhombic and magnetic phase transitions in Na(1-{\delta})FeAs. We also find a relatively weak dispersion of the spin-wave gap in BaFe2As2 along the out-of-plane momentum component, q_z. At the magnetic zone boundary (q_z = 0), spin excitations in the ordered state persist down to 20 meV, which implies a much smaller value of the effective out-of-plane exchange interaction, J_c, as compared to previous estimates based on fitting the high-energy spin-wave dispersion to a Heisenberg-type model.Comment: 5 pages, 4 figures, 1 tabl

    Pseudo-Goldstone magnons in the frustrated S=3/2 Heisenberg helimagnet ZnCr2Se4 with a pyrochlore magnetic sublattice

    Get PDF
    Low-energy spin excitations in any long-range ordered magnetic system in the absence of magnetocrystalline anisotropy are gapless Goldstone modes emanating from the ordering wave vectors. In helimagnets, these modes hybridize into the so-called helimagnon excitations. Here we employ neutron spectroscopy supported by theoretical calculations to investigate the magnetic excitation spectrum of the isotropic Heisenberg helimagnet ZnCr2Se4 with a cubic spinel structure, in which spin-3/2 magnetic Cr3+ ions are arranged in a geometrically frustrated pyrochlore sublattice. Apart from the conventional Goldstone mode emanating from the (0 0 q) ordering vector, low-energy magnetic excitations in the single-domain proper-screw spiral phase show soft helimagnon modes with a small energy gap of ~0.17 meV, emerging from two orthogonal wave vectors (q 0 0) and (0 q 0) where no magnetic Bragg peaks are present. We term them pseudo-Goldstone magnons, as they appear gapless within linear spin-wave theory and only acquire a finite gap due to higher-order quantum-fluctuation corrections. Our results are likely universal for a broad class of symmetric helimagnets, opening up a new way of studying weak magnon-magnon interactions with accessible spectroscopic methods.Comment: V3: Final version to be published in Phys. Rev.

    Repurposing Face Masks after Use: From Wastes to Anode Materials for Na-Ion Batteries

    Get PDF
    Nowadays, face masks play an essential role in limiting coronavirus diffusion. However, their disposable nature represents a relevant environmental issue. In this work, we propose the utilization of two types of disposed (waste) face masks to prepare hard carbons (biochar) by pyrolytic conversion in mild conditions. Moreover, we evaluated the application of the produced hard carbons as anode materials in Na-ion batteries. Pristine face masks were firstly analyzed through infrared spectroscopy and thermogravimetric analysis. The pyrolysis of both mask types resulted in highly disordered carbons, as revealed by field-emission scanning electron microscopy and Raman spectroscopy, with a very low specific surface area. Anodes prepared with these carbons were tested in laboratory-scale Na-metal cells through electrochemical impedance spectroscopy, cyclic voltammetry and galvanostatic cycling, displaying an acceptable specific capacity along a wide range of current regimes, with a good coulombic efficiency (>98% over at least 750 cycles). As a proof of concept, the anodes were also used to assemble a Na-ion cell in combination with a Na3V2(PO4)(2)F-3 (NVPF) cathode and tested towards galvanostatic cycling, with an initial capacity of almost 120 mAhg(-1) (decreasing at about 47 mAhg(-1) after 50 cycles). Even though further optimization is required for a real application, the achieved electrochemical performances represent a preliminary confirmation of the possibility of repurposing disposable face masks into higher-value materials for Na-ion batteries

    Crystal structure and phonon softening in Ca3Ir4Sn13

    Full text link
    We investigated the crystal structure and lattice excitations of the ternary intermetallic stannide Ca3Ir4Sn13 using neutron and x-ray scattering techniques. For T > T* ~ 38 K the x-ray diffraction data can be satisfactorily refined using the space group Pm-3n. Below T* the crystal structure is modulated with a propagation vector of q = (1/2, 1/2, 0). This may arise from a merohedral twinning in which three tetragonal domains overlap to mimic a higher symmetry, or from a doubling of the cubic unit cell. Neutron diffraction and neutron spectroscopy results show that the structural transition at T* is of a second-order, and that it is well described by mean-field theory. Inelastic neutron scattering data point towards a displacive structural transition at T* arising from the softening of a low-energy phonon mode with an energy gap of Delta(120 K) = 1.05 meV. Using density functional theory the soft phonon mode is identified as a 'breathing' mode of the Sn12 icosahedra and is consistent with the thermal ellipsoids of the Sn2 atoms found by single crystal diffraction data
    corecore