24 research outputs found

    Risk factors for poor health and performance in European broiler production systems

    Get PDF
    Background Conventional broilers are currently one of the most efficient protein converters. Although decades of progress in genetic selection and feed formulation have lead to high standards of efficient broiler production, still a lot of variability is found between farms and between successive flocks. The aim of this study was to investigate risk- and/or protective factors for poor health and performance in conventional broiler-farms in Europe by developing eight multivariable linear mixed models. Three different models were used to investigate mortality (overall, first week, after first week), three models for performance variables (growth, feed conversion, European production index) and two models were related to slaughterhouse data (i.e. dead on arrival and condemnation rate). Results Several factors related to management and housing were significantly associated with health and performance of broilers. The following factors were associated with increased mortality: floor quality, neonatal septicemia, ventilation type and other professional activities of the farmer. The factors associated with performance were chick sex, coccidiosis infections, necrotic enteritis, dysbacteriosis, light intensity adaptations, ventilation type, comparing daily flock results with previous flock results by farmer, daily check of feed and water system and type of feed. For dead on arrival three risk factors were identified i.e. daily growth, type of light adaptation and type of drinkers system. For condemnation rate seven risk factors were found, i.e. type of drinking system, daily growth, feed withdrawal time, type of ventilation, house size, septicemia after seven days and type of feed. Conclusions These results imply that a multifactorial approach is required with adaptations involving both improvements in management, housing, health programs and an increasing level of professionalism of the farmer in order to improve broiler performance and health

    Monitoring biosecurity in poultry production: an overview of databases reporting biosecurity compliance from seven European countries

    Get PDF
    Compliance with required on-farm biosecurity practices reduces the risk of contamination and spread of zoonotic and economically important diseases. With repeating avian influenza epidemics in the poultry industry, the need to monitor and improve the overall level of biosecurity is increasing. In practice, biosecurity compliance is assessed by various actors (e.g., academic, private and public institutions), and the results of such assessments may be recorded and gathered in databases which are seldom shared or thoroughly analyzed. This study aimed to provide an inventory of databases related to the assessment of biosecurity in poultry farms in seven major poultry-producing European countries to highlight challenges and opportunities associated with biosecurity data collection, sharing, and use. The institutions in charge of these databases were contacted and interviewed using a structured questionnaire to gather information on the main characteristics of the databases and the context of their implementation. A total of 20 databases were identified, covering the gamut of poultry species and production types. Most databases were linked to veterinary health authorities or academia, and to a lesser extent interbranch organizations. Depending on the institutions in charge, the databases serve various purposes, from providing advice to enforcing regulations. The quality of the biosecurity data collected is believed to be quite reliable, as biosecurity is mostly assessed by trained farm advisors or official veterinarians and during a farm visit. Some of the databases are difficult to analyze and/or do not offer information concerning which biosecurity measures are most or least respected. Moreover, some key biosecurity practices are sometimes absent from certain databases. Although the databases serve a variety of purposes and cover different production types, each with specific biosecurity features, their analysis should help to improve the surveillance of biosecurity in the poultry sector and provide evidence on the benefits of biosecurity

    The application of the loop-mediated isothermal amplification (LAMP) method for diagnosing Enterococcus hirae-associated endocarditis outbreaks in chickens

    No full text
    Abstract Background Enterococcus hirae is considered a part of the normal intestinal biota of several domestic animals, including poultry. However, this species is also associated with infective endocarditis in chickens, a disease that leads to unexpected deaths and serious economical losses. Enterococcus hirae is identified predominantly with the use of conventional bacteriological methods, biochemical tests and PCR. Rapid, sensitive and specific methods for detecting E. hirae in clinical samples are required in poultry production. The aim of this study was to use the Loop-Mediated Isothermal Amplification (LAMP) for the identification and quantification of E. hirae in heart samples from broiler chickens. Results The specificity of the LAMP method was confirmed for 7 enterococcal strains and 3 non-enterococcal strains. E. hirae was detected in all of the 22 analyzed clinical bacterial isolates and in all of the 9 heart samples. Three sets of primers supported the detection of E. hirae with high sensitivity and specificity within one hour. The highest detection rate of a LAMP product was approximately 7 min for an E. hirae strain and 12 min for a positive heart sample. The detection limit for the E. hirae ATCC 10541 standard was 1.3 × 102 CFU (43.4 fg) or 13.8 copies of the E. hirae genome equivalent per reaction. The reaction was 10-fold more sensitive than conventional species-specific PCR. The LAMP assay supported the determination of the E. hirae load in chicken hearts with endocarditis in field cases. The average number of E. hirae cells in hearts was 5.19 × 107 CFU/g of tissue, and the average number of E. hirae genome equivalents in hearts was 5.51× 106 copies/g of tissue. Bacterial counts were significantly higher in the LAMP assay than in the standard plate count. Conclusions The LAMP assay is a useful diagnostic tool and an effective alternative to conventional methods for the detection of this enterococcal species. The sodA-based LAMP assay supported direct identification of E. hirae from pure cultures and heart samples without previous bacterial cultivation. This is the first study to apply the LAMP method for the purpose of diagnosing E. hirae-associated endocarditis in poultry

    13C CP MAS NMR and DFT Studies of 6-Chromanyl Ethereal Derivatives

    No full text
    Vitamin E consists of a group of compounds including α- β- γ- and δ-tocopherols and α- β- γ- and δ-tocotrienols, containing the chroman-6-ol system. The recognition of the structural and dynamic properties of this system, present in all vitamers, seems to be important for the full explanation of the mechanism of the biological activity of vitamin E. This paper presents results of the structural analysis of the chosen 6-chromanyl ethereal derivatives using experimental (13 C NMR-in solution and solid state, as well as variable temperature experiments; single crystal X-ray diffraction) and theoretical (DFT) methods. For one of the studied compounds, 2,2,5,7,8-pentamethyl-6-((tetrahydro-2H-pyran-2-yl)oxy) chroman, the splitting of some signals was observed in the 13C dynamic NMR spectra. This observation was explained by the application of a conformational analysis and subsequent DFT optimization, followed by the calculation of NMR properties

    The incidence [n (%)] of isolation clinical <i>E</i>. <i>cecorum</i> from different tissue samples depending on the poultry flocks.

    No full text
    <p>The incidence [n (%)] of isolation clinical <i>E</i>. <i>cecorum</i> from different tissue samples depending on the poultry flocks.</p

    Characterization of pathogenic <i>Enterococcus cecorum</i> from different poultry groups: Broiler chickens, layers, turkeys, and waterfowl

    No full text
    <div><p><i>Enterococcus cecorum</i> (EC) is known as a commensal in the intestines of mammals and birds. However, it has been described as an emerging pathogen in poultry industry worldwide. The aim of this study was to analyze and compare EC isolated from clinical material collected from poultry groups with different production purposes. The genetic diversity among pathogenic EC in relation to each specific poultry type was examined. In total, 148 isolates from independent infection outbreaks (2011–2016) were used: 76 broiler chickens (CB), 37 broiler breeders (BB), 23 layers (CL), 7 waterfowl (W) and 5 turkey (T) flocks (1 isolate/1 flock). We provided age ranges at diagnosis of EC-infection for 5 poultry groups. Isolates obtained from CB were significantly more frequently retrieved from bone marrow, joints, spine, and contrary to BB, CL less frequently retrieved from respiratory system. The study showed differences between EC of various poultry types in relation to 10/32 (31.3%) biochemical parameters. EC isolates from CB were significantly more often positive for βGAL, βNAG, MLZ, and less often positive for PAL and βMAN than isolates from other poultry types. However, BB and W isolates showed higher ability to metabolise mannitol than CB, CL, and T. CB isolates showed lower ability to survive at 60°C. Only chicken EC-isolates harbored virulence genes: CB (8.1%) > BB (3.4%) > CL (2%). No specific pulsotype of EC was associated with a specific poultry. One or several various (up to 6) genetic types of EC may be involved in outbreaks in CB flocks within one year in one region. Outbreaks reported in following years in the same region were usually caused by a distinct set of EC-genetic types. PFGE results indicated at the genetic heterogeneity among pathogenic isolates involved in outbreaks in relation to each poultry type. To our best knowledge, this is the first study which provides a comparison between clinical EC from 5 poultry groups. The study provides a new insight into EC as pathogen of different bird species. The obtained data may be useful in further studies on EC-infections more focused on a specific type of poultry.</p></div

    Tree showing the genetic similarity between pathogenic <i>E</i>. <i>cecorum</i> isolates from 23 layers flocks (CL) based on PFGE (<i>Sma</i>I) and PCR results (sequences of <i>sodA</i> gene fragment).

    No full text
    <p>The each pulsotype is shown with the corresponding PCR-group (<i>sodA</i>), number of isolate, year of isolation, location of affected flock. Analysis revealed 3 (A–C) individual pulsotypes comprised 8 CL isolates and 3 phylogenetic groups (I–III). Dendogram was constructed based on the Dice similarity coefficient and the UPGMA clustering method. <i>Enterococcus cecorum</i> ATCC 43198 was used as a reference strain.</p

    Positive reactions [n, (%)] in rapid ID 32 STREP exhibited by clinical <i>E</i>. <i>cecorum</i> of different poultry types.

    No full text
    <p>Positive reactions [n, (%)] in rapid ID 32 STREP exhibited by clinical <i>E</i>. <i>cecorum</i> of different poultry types.</p
    corecore