7 research outputs found

    How a dynamic optical system maintains image quality: Self-adjustment of the human eye

    Get PDF
    The eyeball is continually subjected to forces that cause alterations to its shape and dimensions, as well as to its optical components. Forces that induce accommodation result in an intentional change in focus; others, such as the effect of intraocular pressure fluctuations, are more subtle. Although the mechanical properties of the eyeball and its components permit mediation of such subtle forces, the concomitant optical changes are not detected by the visual system. Optical self-adjustment is postulated as the mechanism that maintains image quality. The purpose of this study was to investigate how self-adjustment occurs by using an optical model of the eyeball and to test the requisite optical and biometric conditions

    An integrated model of the human cornea as a linear biaxial birefringent medium

    No full text
    Abstract A novel model of human corneal birefringence is presented. The cornea is treated as a homogeneous biaxial linear birefringent medium in which the values of the binormal axes angle and organization of the main refractive indices vary continuously from the apex to the limbus. In its central part, the angle between binormal axes is 35°, and para centrally, it smoothly increases to 83.7°. The values of the main refractive indices (n x, n y, n z) change, as well as their order, from n x < n z < n y to n z < n x < n y. The transition between these two states was described with a normal distribution (μ = 0.45, σ = 0.1). The presented model corresponds with the experimental results presented in the literature. To our knowledge, it is the first model that presents the anisotropic properties’ distributions of the entire cornea. The presented model facilitates a better understanding of the corneal birefringence phenomenon directly related to its lamellar structure

    Material Extrusion-Based Additive Manufacturing of Poly(Lactic Acid) Antibacterial Filaments&mdash;A Case Study of Antimicrobial Properties

    No full text
    In the era of the coronavirus pandemic, one of the most demanding areas was the supply of healthcare systems in essential Personal Protection Equipment (PPE), including face-shields and hands-free door openers. This need, impossible to fill by traditional manufacturing methods, was met by implementing of such emerging technologies as additive manufacturing (AM/3D printing). In this article, Poly(lactic acid) (PLA) filaments for Fused filament fabrication (FFF) technology in the context of the antibacterial properties of finished products were analyzed. The methodology included 2D radiography and scanning electron microscopy (SEM) analysis to determine the presence of antimicrobial additives in the material and their impact on such hospital pathogens as Staphylococcus aureus, Pseudomonas aeruginosa, and Clostridium difficile. The results show that not all tested materials displayed the expected antimicrobial properties after processing in FFF technology. The results showed that in the case of specific species of bacteria, the FFF samples, produced using the declared antibacterial materials, may even stimulate the microbial growth. The novelty of the results relies on methodological approach exceeding scope of ISO 22196 standard and is based on tests with three different species of bacteria in two types of media simulating common body fluids that can be found on frequently touched, nosocomial surfaces. The data presented in this article is of pivotal meaning taking under consideration the increasing interest in application of such products in the clinical setting
    corecore