38 research outputs found

    Evaluation of an AAV2-Based Rapamycin-Regulated Glial Cell Line-Derived Neurotrophic Factor (GDNF) Expression Vector System

    Get PDF
    Effective regulation of transgene product in anatomically circumscribed brain tissue is dependent on the pharmacokinetics of the regulating agent, the kinetics of transcriptional activation and degradation of the transgene product. We evaluated rapamycin-regulated AAV2-GDNF expression in the rat brain (striatum). Regulated (a dual-component system: AAV2-FBZhGDNF + AAV2-TF1Nc) and constitutive (CMV-driven) expression vectors were compared. Constitutively active AAV2-GDNF directed stable GDNF expression in a dose-dependent manner and it increased for the first month, thereafter reaching a plateau that was maintained over a further 3 months. For the AAV2-regGDNF, rapamycin was administered in a 3-days on/4-days off cycle. Intraperitoneal, oral, and direct brain delivery (CED) of rapamycin were evaluated. Two cycles of rapamycin at an intraperitoneal dose of 10 mg/kg gave the highest GDNF level (2.75±0.01ng/mg protein). Six cycles at 3 mg/kg resulted in lower GDNF values (1.36±0.3 ng/mg protein). Interestingly, CED of rapamycin into the brain at a very low dose (50 ng) induced GDNF levels comparable to a 6-week intraperitoneal rapamycin cycle. This study demonstrates the effectiveness of rapamycin regulation in the CNS. However, the kinetics of the transgene in brain tissue, the regulator dosing amount and schedule are critical parameters that influence the kinetics of accumulation and zenith of the encoded transgene product

    Adeno-associated viral vector serotype 9-based gene therapy for Niemann-Pick disease type A

    Get PDF
    Niemann-Pick disease type A (NPD-A) is a lysosomal storage disorder characterized by neurodegeneration and early death. It is caused by loss-of-function mutations in the gene encoding for acid sphingomyelinase (ASM), which hydrolyzes sphingomyelin into ceramide. Here, we evaluated the safety of cerebellomedullary (CM) cistern injection of adeno-associated viral vector serotype 9 encoding human ASM (AAV9-hASM) in nonhuman primates (NHP). We also evaluated its therapeutic benefit in a mouse model of the disease (ASM-KO mice). We found that CM injection in NHP resulted in widespread transgene expression within brain and spinal cord cells without signs of toxicity. CM injection in the ASM-KO mouse model resulted in hASM expression in cerebrospinal fluid and in different brain areas without triggering an inflammatory response. In contrast, direct cerebellar injection of AAV9-hASM triggered immune response. We also identified a minimally effective therapeutic dose for CM injection of AAV9-hASM in mice. Two months after administration, the treatment prevented motor and memory impairment, sphingomyelin (SM) accumulation, lysosomal enlargement, and neuronal death in ASM-KO mice. ASM activity was also detected in plasma from AAV9-hASM CM-injected ASM-KO mice, along with reduced SM amount and decreased inflammation in the liver. Our results support CM injection for future AAV9-based clinical trials in NPD-A as well as other lysosomal storage brain disorders.Nation Foundation and by grants from the Spanish Ministry of Economy and Competitivity (SAF-2014-57539-R and SAF2017-87698-R) to M.D.L. and from NIH-NINDS (R01NS073940) to K.S.B. A.P.-C. was a recipient of the FPU predoctoral fellowship from the Spanish Ministry of Economy and Competitivity and FundaciĂłn RamĂłn Areces to the Centro BiologĂ­a Molecular Severo Ochoa

    Non-PEGylated liposomes for convection-enhanced delivery of topotecan and gadodiamide in malignant glioma: initial experience

    Get PDF
    Convection-enhanced delivery (CED) of highly stable PEGylated liposomes encapsulating chemotherapeutic drugs has previously been effective against malignant glioma xenografts. We have developed a novel, convectable non-PEGylated liposomal formulation that can be used to encapsulate both the topoisomerase I inhibitor topotecan (topoCEDℱ) and paramagnetic gadodiamide (gadoCEDℱ), providing an ideal basis for real-time monitoring of drug distribution. Tissue retention of topoCED following single CED administration was significantly improved relative to free topotecan. At a dose of 10 Όg (0.5 mg/ml), topoCED had a half-life in brain of approximately 1 day and increased the area under the concentration–time curve (AUC) by 28-fold over free topotecan (153.8 vs. 5.5 Όg day/g). The combination of topoCED and gadoCED was found to co-convect well in both naĂŻve rat brain and malignant glioma xenografts (correlation coefficients 0.97–0.99). In a U87MG cell assay, the 50% inhibitory concentration (IC50) of topoCED was approximately 0.8 ΌM at 48 and 72 h; its concentration–time curves were similar to free topotecan and unaffected by gadoCED. In a U87MG intracranial rat xenograft model, a two-dose CED regimen of topoCED co-infused with gadoCED greatly increased median overall survival at dose levels of 0.5 mg/ml (29.5 days) and 1.0 mg/ml (33.0 days) vs. control (20.0 days; P < 0.0001 for both comparisons). TopoCED at higher concentrations (1.6 mg/ml) co-infused with gadoCED showed no evidence of histopathological changes attributable to either agent. The positive results of tissue pharmacokinetics, co-convection, cytotoxicity, efficacy, and lack of toxicity of topoCED in a clinically meaningful dose range, combined with an ideal matched-liposome paramagnetic agent, gadoCED, implicates further clinical applications of this therapy in the treatment of malignant glioma

    Ganglioside Metabolism and Parkinson's Disease

    No full text
    Here we advance the hypothesis that Parkinson's disease (PD) is fundamentally a failure of trophic support for specific classes of neurons, primarily catecholaminergic. Evidence from our laboratory provides a framework into which a broad array of findings from many quarters can be integrated into a general theory that offers testable hypotheses to new and established investigators. Mice deficient in the ability to synthesize series-a gangliosides, specifically GM1 ganglioside, develop parkinsonism. We found that this seems to be due to a failure in signaling efficiency by the important catecholaminergic growth factor, GDNF. Interestingly, these mice accumulate alpha-synuclein in nigral neurons. Striatal over-expression of GDNF eliminates these aggregates and also restores normal motor function. These findings bring into question common beliefs about alpha-synuclein pathology and may help us to reinterpret other experimental findings in a new light. The purpose of this article is to provoke new thinking about PD and hopefully encourage younger scientists to explore some of the ideas presented below

    Systemic rapamycin alone may not be a treatment option for malignant glioma: evidence from an in vivo study

    No full text
    The mammalian target of rapamycin (mTOR) plays a central role in regulating the proliferation of cancer cells, and mTOR-specific inhibitors such as rapamycin analogs are considered as a promising therapy for malignant glioma. In this study, we investigated the possibility of using mTOR inhibitors to treat gliomas. We used a molecular marker, phosphorylation of S6 protein, to monitor biological effects of mTOR inhibitors within xenografts. Phosphorylation was decreased more in U87MG glioma after treatment with high doses of rapamycin or its analog, torisel (10 mg/kg or 25 mg/kg), but only slightly after a low dose of rapamycin (3 mg/kg). This effect correlated with enhanced survival of rats after weekly peritoneal injections of both drugs at the highest two doses but not at the low dose. High doses of both drugs caused weight loss in rats. Clinical trial data indicates that low doses of Torisel (<3 mg/kg) were not efficacious in recurrent GBM. It is concluded that systemic administration of rapamycin analogues may not be a treatment option for patients with malignant glioma due to the intolerability of high doses that might otherwise be effective. The present study underscores the need for better pre-clinical evaluation of drugs with respect to therapeutic window.Depto. de EstadĂ­stica e InvestigaciĂłn OperativaFac. de FarmaciaTRUEpu

    Cerebral Infusion of AAV9 Vector-encoding Non-self Proteins Can Elicit Cell-mediated Immune Responses

    No full text
    There is considerable interest in the use of adeno-associated virus serotype 9 (AAV9) for neurological gene therapy partly because of its ability to cross the blood–brain barrier to transduce astrocytes and neurons. This raises the possibility that AAV9 might also transduce antigen-presenting cells (APC) in the brain and provoke an adaptive immune response. We tested this hypothesis by infusing AAV9 vectors encoding foreign antigens, namely human aromatic L-amino acid decarboxylase (hAADC) and green fluorescent protein (GFP), into rat brain parenchyma. Over ensuing weeks, both vectors elicited a prominent inflammation in transduced brain regions associated with upregulation of MHC II in glia and associated lymphocytic infiltration. Transduction of either thalamus or striatum with AAV9-hAADC evinced a significant loss of neurons and induction of anti-hAADC antibodies. We conclude that AAV9 transduces APC in the brain and, depending on the immunogenicity of the transgene, can provoke a full immune response that mediates significant brain pathology. We emphasize, however, that these observations do not preclude the use of AAV serotypes that can transduce APC. However, it does potentially complicate preclinical toxicology studies in which non-self proteins are expressed at a level sufficient to trigger cell-mediated and humoral immune responses

    Efficacy of convection enhanced delivery of MTX110 (soluble panobinostat) in preclinical Diffuse Intrinsic Pontine Glioma models using metabolic hyperpolarized 13C imaging

    No full text
    Background: Diffuse intrinsic pontine glioma (DIPG) usually occurs in children and has poor outcomes despite treatment. Large drug screens have identified the pan-histone deacetylate inhibitor panobinostat as a promising agent, however clinical response might be hampered by limited blood brain barrier penetration. Hyperpolarized 13C magnetic resonance (MR) metabolic imaging has successfully been applied to non-invasively assess metabolic activity of cancer therapies. Here, we use in vitro and in vivo DIPG models to validate the therapeutic efficacy of MTX110, an aqueous form of panobinostat delivered by convection enhanced delivery (CED) and apply metabolic imaging. Methods: MTX110 inhibitory effect was assessed in 11 DIPG cell lines. Caspase 3/7 levels were measured to assess mode of cell death. FACS analysis was utilized to determine impact on cell cycle. Hyperpolarized 13C imaging determined changes in pyruvate and lactate levels after treatment. In vivo activity of CED of MTX110 was assessed in a patient-derived xenograft rat model and tissue half-life of MTX110 was determined using mass spectrometry. Results: MTX110 showed similar IC50 to panobinostat ranging from 5.34 nM and 47.96 nM. Anti-proliferative effects of MTX110 are mediated by G1 cell cycle arrest and subsequent apoptosis. Drug treatment led to reduced pyruvate to lactate conversion. CED of MTX110 significantly prolonged survival of tumor-bearing rats (p = 0.0372) with no signs of systemic toxicity. Tissue half-life after single CED of MTX110 is 2 h. Conclusions: Our results demonstrate that CED of MTX110, has potent antitumor activity with limited systemic toxicity and that hyperpolarized 13C imaging is able to assess metabolic impact
    corecore