39 research outputs found

    La structure et la fonction de la polymérase d'orthobunyavirus La Crosse

    Get PDF
    Viruses are not more than particles composed of lipids and/or proteins with genetic information – the viral RNA or DNA genome – embedded inside. In order to be efficient, once they enter the host cell they need to multiply this genetic information, package it into new viral particles and spread out from the cell. While in order to produce viral proteins viruses highjack cellular machinery, for replicating their genome most viruses use their own, specialized polymerases.Bunyaviridae is the largest viral family of segmented negative-strand RNA viruses, comprising also Arenaviridae and Orthomyxoviridae families. Some bunyaviruses are causative agents of severe human diseases including heamorrhagic fevers, encephalitis and meningitis. Others infect a variety of plants and animals posing a significant economic threat to the crop cultivation and cattle breeding.RNA-dependent RNA polymerases of segmented negative-strand RNA viruses are multifunctional machines, able to perform both de novo genome replication via positive-strand cRNA intermediate, and viral mRNA transcription using cap-snatched host-derived mRNA primer. Viral RNA genome of bunyaviruses, arenaviruses, and orthomyxoviruses is divided into three, two, and eight segments respectively. Each segment, coated by nucleoproteins and attached through its conserved 3â€Č and 5â€Č ends to the polymerase, constitutes an individual ribonucleoprotein particle – an autonomous RNA synthesis unit.The scope of the PhD project described in this thesis was the structural and functional characterization of the La Crosse orthobunyavirus polymerase, also named the L protein. It was based on the hypothesis that all polymerases of segmented negative-strand RNA viruses share a similar domain organization and mode of action. During the 1st year attempts were made to confirm and characterize a putative C-terminal cap-binding domain. During the 2nd year project was extended to study 3â€Č and 5â€Č vRNA ends interactions with the full length and C-terminus truncated L protein. Facing difficulties to establish replication and transcription assays in vitro, vRNA binding studies and co-crystallizastion were continued during the 3rd year. This finally led to the main achievement of the thesis – the x-ray structure of La Crosse orthobunyavirus polymerase in complex with vRNA. Obtained structure is a breakthrough in the bunyavirus field. It reveals – unlike it was initially believed – conserved, sequence specific and separate binding sites for 3â€Č and 5â€Č vRNA ends located within the polymerase. The 5â€Č vRNA end binding allosterically structures one of the conserved catalytic motifs within the polymerase active site. The structure sheds also some new light on bunyaviral replication and transcription mechanisms. There exist two distinct product and template exit channels, suggesting that the nascent RNA strand is separated from the template and leaves the polymerase as the single-strand RNA. Close proximity of the template entry and exit channels explains how the polymerase can translocate along the genomic template with minimal disruption of the RNP.In parallel to the La Crosse polymerase structure, structures of Influenza A and B heterotrimeric polymerases in complex with vRNA were also obtained in Stephen Cusack group. This gave a great opportunity to compare the domain organization and the nature of vRNA binding by viral polymerases belonging to Bunyaviriadae and Orthomyxoviridae families, and proved that despite minimal sequence homology the structural similarities are striking. This strongly suggests an evolutionary common ancestor, which can possibly be shared with non-segmented negative-strand RNA viruses as well.Les virus ne sont rien de plus que des particules composĂ©es de lipides et/ou de protĂ©ines qui encapsulent de l'information gĂ©nĂ©tique composĂ©e d'ARN ou d'ADN. Au cours du cycle viral, les virus entrent dans la cellule hĂŽte oĂč ils dupliquent leur gĂ©nome, puis forment de nouvelles particules virales qui ressortiront de la cellule pour se diffuser. Alors que pour produire leurs protĂ©ines virales les virus dĂ©tournent la machinerie cellulaire, ils utilisent pour la plupart leur propre polymĂ©rase spĂ©cifique pour rĂ©pliquer leur gĂ©nome.Les Bunyaviridae sont une grande famille des virus Ă  ARN simple brin segmentĂ© de polaritĂ© nĂ©gative. Les Arenaviridae et les Orthomyxoviridae sont les deux autres familles de ce type. Certains bunyavirus provoquent des maladies humaines graves, comme des fiĂšvres hĂ©morragiques, des encĂ©phalites et des mĂ©ningites. D'autres infectent des plantes et animaux, posant une menace Ă©conomique sĂ©rieuse en agronomie.Les ARN polymĂ©rases ARN-dĂ©pendante de virus Ă  ARN nĂ©gatif segmentĂ© sont des machineries multi-fonctionnelles, capables de rĂ©pliquer le gĂ©nome viral et de le transcrire en ARNs messagers. La rĂ©plication est effectuĂ©e de novo, en utilisant un intermĂ©diaire d'ARN complĂ©mentaire de polaritĂ© positive, alors que la transcription est initiĂ©e par vol de coiffe d'ARN cellulaire. Chaque segment du gĂ©nome viral est recouvert par des nuclĂ©oprotĂ©ines et fixĂ© Ă  la polymĂ©rase par ses extrĂ©mitĂ©s 3' et 5' conservĂ©es. Le complexe ARN viral/nuclĂ©oprotĂ©ines/polymĂ©rase forme une ribonuclĂ©oprotĂ©ine, qui est l'unitĂ© fonctionnelle de la rĂ©plication/transcription.L'objectif de mon projet de thĂšse Ă©tait la caractĂ©risation structurale et fonctionnelle de la polymĂ©rase du virus La Crosse, Ă©galement nommĂ©e protĂ©ine L. Ce projet Ă©tait basĂ© sur l'hypothĂšse que toutes les polymĂ©rases de virus Ă  ARN nĂ©gatif segmentĂ© pourraient partager une organisation et un mode d'action similaire. Lors de la premiĂšre annĂ©e de ma thĂšse, j'ai tentĂ© de caractĂ©riser le domaine C-terminal, que nous supposions ĂȘtre responsable de la fixation de coiffe. Au cours de la deuxiĂšme annĂ©e, j'ai Ă©tendu mes recherches sur l'Ă©tude de l'interaction entre les extrĂ©mitĂ©s de l'ARN viral et la protĂ©ine L (protĂ©ine entiĂšre et construction tronquĂ©e en C-terminal). ConfrontĂ© Ă  des difficultĂ©s pour Ă©tablir des tests de rĂ©plication et de transcription in vitro, j'ai poursuivi mes recherches en troisiĂšme annĂ©e avec l'Ă©tude d'interactions et de co-cristallisation entre polymĂ©rase et ARN viral. Cela a finalement conduit au rĂ©sultat principal de ma thĂšse - la dĂ©termination de la structure par cristallographie aux rayons X de la polymĂ©rase de virus de La Crosse en complexe avec les extrĂ©mitĂ©s 3' et 5' de l‘ARN viral. La structure obtenue constitue une percĂ©e dans le domaine de bunyavirus. Elle rĂ©vĂšle – Ă  la diffĂ©rence de ce qui avait Ă©tĂ© initialement proposĂ© – que les extrĂ©mitĂ©s 3' et 5' de l'ARN se lient dans deux sites sĂ©parĂ©s et conservĂ©s. La liaison de l'extrĂ©mitĂ© 5' de l'ARN viral stabilise de façon allostĂ©rique l'un des motifs catalytiques du site actif de la polymĂ©rase. La structure rĂ©vĂšle l'existence de deux tunnels sĂ©parĂ©s pour l'ARN produit et l'ARN matrice de sortir, ce qui suggĂšre que le brin d'ARN naissant est sĂ©parĂ© de la matrice et quitte la polymĂ©rase comme ARN simple brin. La proximitĂ© des tunnels d'entrĂ©e et de sortie de la matrice explique comment la polymĂ©rase peut se dĂ©placer le long de l'ARN gĂ©nomique avec une perturbation minimale de la ribonuclĂ©oprotĂ©ine.En parallĂšle de la structure de la polymĂ©rase du virus La Crosse, les structures des polymĂ©rases hĂ©tĂ©rotrimĂ©riques de la grippe A et B en complexe avec l'ARN viral ont Ă©galement Ă©tĂ© dĂ©terminĂ©es au sein du groupe du Dr. Stephen Cusack. La comparaison de l'organisation des polymĂ©rases des deux familles et de la nature de leur liaison avec l'ARN viral montre que, malgrĂ© une homologie de sĂ©quence minimale, des similitudes structurelles sont frappantes. Cela suggĂšre fortement la prĂ©sence d'un ancĂȘtre commun

    Comparative structural and functional analysis of Bunyavirus and Arenavirus cap-snatching Endonucleases

    Get PDF
    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5â€Č end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase

    Free Radicals, Salicylic Acid and Mycotoxins in Asparagus After Inoculation with Fusarium proliferatum and F. oxysporum

    Get PDF
    Electron paramagnetic resonance was used to monitor free radicals and paramagnetic species like Fe, Mn, Cu generation, stability and status in Asparagus officinalis infected by common pathogens Fusarium proliferatum and F. oxysporum. Occurrence of F. proliferatum and F. oxysporum, level of free radicals and other paramagnetic species, as well as salicylic acid and mycotoxins content in roots and stems of seedlings were estimated on the second and fourth week after inoculation. In the first term free and total salicylic acid contents were related to free radicals level in stem (P = 0.010 and P = 0.033, respectively). Concentration of Fe3+ ions in porphyrin complexes (g = 2.3, g = 2.9) was related to the species of pathogen. There was no significant difference between Mn2+ concentrations in stem samples; however, the level of free radicals in samples inoculated with F. proliferatum was significantly higher when compared to F. oxysporum

    Protein tyrosine phosphatases expression during development of mouse superior colliculus

    Get PDF
    Protein tyrosine phosphatases (PTPs) are key regulators of different processes during development of the central nervous system. However, expression patterns and potential roles of PTPs in the developing superior colliculus remain poorly investigated. In this study, a degenerate primer-based reverse transcription-polymerase chain reaction (RT-PCR) approach was used to isolate seven different intracellular PTPs and nine different receptor-type PTPs (RPTPs) from embryonic E15 mouse superior colliculus. Subsequently, the expression patterns of 11 PTPs (TC-PTP, PTP1C, PTP1D, PTP-MEG2, PTP-PEST, RPTPJ, RPTPΔ, RPTPRR, RPTPσ, RPTPÎș and RPTPÎł) were further analyzed in detail in superior colliculus from embryonic E13 to postnatal P20 stages by quantitative real-time RT-PCR, Western blotting and immunohistochemistry. Each of the 11 PTPs exhibits distinct spatiotemporal regulation of mRNAs and proteins in the developing superior colliculus suggesting their versatile roles in genesis of neuronal and glial cells and retinocollicular topographic mapping. At E13, additional double-immunohistochemical analysis revealed the expression of PTPs in collicular nestin-positive neural progenitor cells and RC-2-immunoreactive radial glia cells, indicating the potential functional importance of PTPs in neurogenesis and gliogenesis

    Structure and function of the La Crosse orthobunyavirus polymerase

    No full text
    Les virus ne sont rien de plus que des particules composĂ©es de lipides et/ou de protĂ©ines qui encapsulent de l'information gĂ©nĂ©tique composĂ©e d'ARN ou d'ADN. Au cours du cycle viral, les virus entrent dans la cellule hĂŽte oĂč ils dupliquent leur gĂ©nome, puis forment de nouvelles particules virales qui ressortiront de la cellule pour se diffuser. Alors que pour produire leurs protĂ©ines virales les virus dĂ©tournent la machinerie cellulaire, ils utilisent pour la plupart leur propre polymĂ©rase spĂ©cifique pour rĂ©pliquer leur gĂ©nome.Les Bunyaviridae sont une grande famille des virus Ă  ARN simple brin segmentĂ© de polaritĂ© nĂ©gative. Les Arenaviridae et les Orthomyxoviridae sont les deux autres familles de ce type. Certains bunyavirus provoquent des maladies humaines graves, comme des fiĂšvres hĂ©morragiques, des encĂ©phalites et des mĂ©ningites. D'autres infectent des plantes et animaux, posant une menace Ă©conomique sĂ©rieuse en agronomie.Les ARN polymĂ©rases ARN-dĂ©pendante de virus Ă  ARN nĂ©gatif segmentĂ© sont des machineries multi-fonctionnelles, capables de rĂ©pliquer le gĂ©nome viral et de le transcrire en ARNs messagers. La rĂ©plication est effectuĂ©e de novo, en utilisant un intermĂ©diaire d'ARN complĂ©mentaire de polaritĂ© positive, alors que la transcription est initiĂ©e par vol de coiffe d'ARN cellulaire. Chaque segment du gĂ©nome viral est recouvert par des nuclĂ©oprotĂ©ines et fixĂ© Ă  la polymĂ©rase par ses extrĂ©mitĂ©s 3' et 5' conservĂ©es. Le complexe ARN viral/nuclĂ©oprotĂ©ines/polymĂ©rase forme une ribonuclĂ©oprotĂ©ine, qui est l'unitĂ© fonctionnelle de la rĂ©plication/transcription.L'objectif de mon projet de thĂšse Ă©tait la caractĂ©risation structurale et fonctionnelle de la polymĂ©rase du virus La Crosse, Ă©galement nommĂ©e protĂ©ine L. Ce projet Ă©tait basĂ© sur l'hypothĂšse que toutes les polymĂ©rases de virus Ă  ARN nĂ©gatif segmentĂ© pourraient partager une organisation et un mode d'action similaire. Lors de la premiĂšre annĂ©e de ma thĂšse, j'ai tentĂ© de caractĂ©riser le domaine C-terminal, que nous supposions ĂȘtre responsable de la fixation de coiffe. Au cours de la deuxiĂšme annĂ©e, j'ai Ă©tendu mes recherches sur l'Ă©tude de l'interaction entre les extrĂ©mitĂ©s de l'ARN viral et la protĂ©ine L (protĂ©ine entiĂšre et construction tronquĂ©e en C-terminal). ConfrontĂ© Ă  des difficultĂ©s pour Ă©tablir des tests de rĂ©plication et de transcription in vitro, j'ai poursuivi mes recherches en troisiĂšme annĂ©e avec l'Ă©tude d'interactions et de co-cristallisation entre polymĂ©rase et ARN viral. Cela a finalement conduit au rĂ©sultat principal de ma thĂšse - la dĂ©termination de la structure par cristallographie aux rayons X de la polymĂ©rase de virus de La Crosse en complexe avec les extrĂ©mitĂ©s 3' et 5' de l‘ARN viral. La structure obtenue constitue une percĂ©e dans le domaine de bunyavirus. Elle rĂ©vĂšle – Ă  la diffĂ©rence de ce qui avait Ă©tĂ© initialement proposĂ© – que les extrĂ©mitĂ©s 3' et 5' de l'ARN se lient dans deux sites sĂ©parĂ©s et conservĂ©s. La liaison de l'extrĂ©mitĂ© 5' de l'ARN viral stabilise de façon allostĂ©rique l'un des motifs catalytiques du site actif de la polymĂ©rase. La structure rĂ©vĂšle l'existence de deux tunnels sĂ©parĂ©s pour l'ARN produit et l'ARN matrice de sortir, ce qui suggĂšre que le brin d'ARN naissant est sĂ©parĂ© de la matrice et quitte la polymĂ©rase comme ARN simple brin. La proximitĂ© des tunnels d'entrĂ©e et de sortie de la matrice explique comment la polymĂ©rase peut se dĂ©placer le long de l'ARN gĂ©nomique avec une perturbation minimale de la ribonuclĂ©oprotĂ©ine.En parallĂšle de la structure de la polymĂ©rase du virus La Crosse, les structures des polymĂ©rases hĂ©tĂ©rotrimĂ©riques de la grippe A et B en complexe avec l'ARN viral ont Ă©galement Ă©tĂ© dĂ©terminĂ©es au sein du groupe du Dr. Stephen Cusack. La comparaison de l'organisation des polymĂ©rases des deux familles et de la nature de leur liaison avec l'ARN viral montre que, malgrĂ© une homologie de sĂ©quence minimale, des similitudes structurelles sont frappantes. Cela suggĂšre fortement la prĂ©sence d'un ancĂȘtre commun.Viruses are not more than particles composed of lipids and/or proteins with genetic information – the viral RNA or DNA genome – embedded inside. In order to be efficient, once they enter the host cell they need to multiply this genetic information, package it into new viral particles and spread out from the cell. While in order to produce viral proteins viruses highjack cellular machinery, for replicating their genome most viruses use their own, specialized polymerases.Bunyaviridae is the largest viral family of segmented negative-strand RNA viruses, comprising also Arenaviridae and Orthomyxoviridae families. Some bunyaviruses are causative agents of severe human diseases including heamorrhagic fevers, encephalitis and meningitis. Others infect a variety of plants and animals posing a significant economic threat to the crop cultivation and cattle breeding.RNA-dependent RNA polymerases of segmented negative-strand RNA viruses are multifunctional machines, able to perform both de novo genome replication via positive-strand cRNA intermediate, and viral mRNA transcription using cap-snatched host-derived mRNA primer. Viral RNA genome of bunyaviruses, arenaviruses, and orthomyxoviruses is divided into three, two, and eight segments respectively. Each segment, coated by nucleoproteins and attached through its conserved 3â€Č and 5â€Č ends to the polymerase, constitutes an individual ribonucleoprotein particle – an autonomous RNA synthesis unit.The scope of the PhD project described in this thesis was the structural and functional characterization of the La Crosse orthobunyavirus polymerase, also named the L protein. It was based on the hypothesis that all polymerases of segmented negative-strand RNA viruses share a similar domain organization and mode of action. During the 1st year attempts were made to confirm and characterize a putative C-terminal cap-binding domain. During the 2nd year project was extended to study 3â€Č and 5â€Č vRNA ends interactions with the full length and C-terminus truncated L protein. Facing difficulties to establish replication and transcription assays in vitro, vRNA binding studies and co-crystallizastion were continued during the 3rd year. This finally led to the main achievement of the thesis – the x-ray structure of La Crosse orthobunyavirus polymerase in complex with vRNA. Obtained structure is a breakthrough in the bunyavirus field. It reveals – unlike it was initially believed – conserved, sequence specific and separate binding sites for 3â€Č and 5â€Č vRNA ends located within the polymerase. The 5â€Č vRNA end binding allosterically structures one of the conserved catalytic motifs within the polymerase active site. The structure sheds also some new light on bunyaviral replication and transcription mechanisms. There exist two distinct product and template exit channels, suggesting that the nascent RNA strand is separated from the template and leaves the polymerase as the single-strand RNA. Close proximity of the template entry and exit channels explains how the polymerase can translocate along the genomic template with minimal disruption of the RNP.In parallel to the La Crosse polymerase structure, structures of Influenza A and B heterotrimeric polymerases in complex with vRNA were also obtained in Stephen Cusack group. This gave a great opportunity to compare the domain organization and the nature of vRNA binding by viral polymerases belonging to Bunyaviriadae and Orthomyxoviridae families, and proved that despite minimal sequence homology the structural similarities are striking. This strongly suggests an evolutionary common ancestor, which can possibly be shared with non-segmented negative-strand RNA viruses as well

    Origin and evolution of basins in the eastern part of JasƂo-Sanok Depression (Polish Carpathians) in the Late Vistulian and Holocene

    No full text
    Results of a geomorphologic study as well as radiocarbon and pollen analyses of sediments in small basins of the JasƂo-Sanok Depression (Western Carpathians) are summarised. Floors of these basins, carved in soft shale-sandstone Krosno Beds, are covered with channel fluvial deposits and oxbow-lake sediments with lake chalk and peat accumulated in the Late Vistulian and Holocene. Since the early Atlantic Phase (ca 8,400–7,900 BP) the apparent acceleration of overbank (flood) deposition intermitting the peat accumulation is observed. The plant succession includes the Late Glacial (pre-AllerĂžd, AllerĂžd and Younger Dryas) with coniferous park forests, through mixed deciduous forests of the Holocene with elm, hazel, oak and lime as well as spruce-elm forests with alder in wetlands, up to present-day hornbeam forests (Tilio-Carpinetum of various types) and extra-zonal Carpathian beech forests (Dentario-Glandulosae- Fagetum). Abies alba (fir) is frequent in both these association types. First evidences of synanthropic plants that prove presence of prehistoric man appeared in the Subboreal Phase. The oldest radiocarbon date 13,550±100 BP (Gd-7355) [16,710–16,085 b2k], from a bottom part of the Humniska section is probably overestimated. This is indicated by palynological data, which suggest attribution of this section to the older AllerĂžd. Small thickness of gravel blanket from the Plenivistulian termination and the beginning of the Late Vistulian, as well as large areas devoid of weathering and solifluction covers indicate that during the Plenivistulian weathering processes and removal of silt-clay material predominated in the basins. In that time the deflation was among important processes, which is proved by deflation troughs, faceted cobbles and thick covers of the Carpathian type of loess. The Besko Basin has pre-Vistulian tectonic foundation, while landforms of its floor are of erosion-degradation origin and formed during the last Scandinavian glaciation. In the Holocene the basin floors were overbuilt with fluvial deposits up to 8 m thick

    Structural Insights into Bunyavirus Replication and Its Regulation by the vRNA Promoter

    Get PDF
    International audienceSegmented negative-strand RNA virus (sNSV) polymerases transcribe and replicate the viral RNA (vRNA) within a ribonucleoprotein particle (RNP). We present cryo-EM and X-ray structures of, respectively, apo- and vRNA bound La Crosse orthobunyavirus (LACV) polymerase that give atomic-resolution insight into how such RNPs perform RNA synthesis. The complementary 3' and 5' vRNA extremities are sequence specifically bound in separate sites on the polymerase. The 5' end binds as a stem-loop, allosterically structuring functionally important polymerase active site loops. Identification of distinct template and product exit tunnels allows proposal of a detailed model for template-directed replication with minimal disruption to the circularised RNP. The similar overall architecture and vRNA binding of monomeric LACV to heterotrimeric influenza polymerase, despite high sequence divergence, suggests that all sNSV polymerases have a common evolutionary origin and mechanism of RNA synthesis. These results will aid development of replication inhibitors of diverse, serious human pathogenic viruses

    Pre-initiation and elongation structures of full-length La Crosse virus polymerase reveal functionally important conformational changes

    No full text
    International audienceBunyavirales is an order of segmented negative-strand RNA viruses comprising several life-threatening pathogens against which no effective treatment is currently available. Replication and transcription of the RNA genome constitute essential processes performed by the virally encoded multi-domain RNA-dependent RNA polymerase. Here, we describe the complete high-resolution cryo-EM structure of La Crosse virus polymerase. It reveals the presence of key protruding C-terminal domains, notably the cap-binding domain, which undergoes large movements related to its role in transcription initiation, and a zinc-binding domain that displays a fold not previously observed. We capture the polymerase structure at pre-initiation and elongation states, uncovering the coordinated movement of the priming loop, mid-thumb ring linker and lid domain required for the establishment of a ten-base-pair template-product RNA duplex before strand separation into respective exit tunnels. These structural details and the observed dynamics of key functional elements will be instrumental for structure-based development of polymerase inhibitors
    corecore