561 research outputs found

    Spatial-Temporal Distribution of the Palinurid and Scyllarid Phyllosoma Larvae in Oman Coastal Waters

    Get PDF
    The Bongo Net samples collected between 2005 and 2008 in the Sea of Oman and in the north-western part of the Arabian Sea (near Massirah Island) were analyzed, for a pilot assessment of seasonal and spatial distribution of the phyllosoma larvae. In the samples collected, 84% of all phyllosoma larvae were from the family Palinuridae, while the others were contributed by family Scyllaridae. All larvae of Panulirus homarus were in the first development stage and had a mean body length of 1.30±0.89mm. The phyllosoma larvae of the less abundant family Scyllaridae were in the second, third, and fourth development stages, which had a mean length of 2.3mm, 3.3mm and 4.63mm, respectively. In terms of seasonal changes, the phyllosoma larvae tend to appear in Omani waters in February, reaching their maximum numbers in April. The abundance of phyllosoma P. homarus was as much as twofold higher in the Arabian Sea compared to the Sea of Oman

    Physical Controls on Oxygen Distribution and Denitrification Potential in the North West Arabian Sea

    Get PDF
    At suboxic oxygen concentrations, key biogeochemical cycles change and denitrification becomes the dominant remineralization pathway. Earth system models predict oxygen loss across most ocean basins in the next century; oxygen minimum zones near suboxia may become suboxic and therefore denitrifying. Using an ocean glider survey and historical data, we show oxygen loss in the Gulf of Oman (from 6–12 to <2 μmol/kg−1) not represented in climatologies. Because of the nonlinearity between denitrification and oxygen concentration, resolutions of current Earth system models are too coarse to accurately estimate denitrification. We develop a novel physical proxy for oxygen from the glider data and use a high‐resolution physical model to show eddy stirring of oxygen across the Gulf of Oman. We use the model to investigate spatial and seasonal differences in the ratio of oxic and suboxic water across the Gulf of Oman and waters exported to the wider Arabian Sea

    Zooplankton of Oman Coastal Waters

    Get PDF
    Monthly sampling during daytime was carried out in 2007-2011 at Bandar Al-Khyran (23.51oN, 58.72oE) which is the largest semi-enclosed bay on the southern end of the Sea of Oman with about 4 km2 in surface area and an average depth of 10 m. Zooplankton were represented by Copepoda (79%), Cladocera (9%), Oikopleuriddae (7%), Chaetognatha (3%), and Decapoda (~2%) comprising the major part of the total zooplankton abundance. Among copepods, 27 species constituted ~75% of total copepod abundance. Changes of copepod abundance have not had a pronounced seasonal pattern. Instead, a multiple peak structure in monthly fluctuations was observed, on the level of genera as well as the abundance of species. Amplitudes and timing of the copepod peak abundance were markedly different during the studied years

    Living on the edge: Biofilms developing in oscillating environmental conditions

    Get PDF
    For the first time, the densities and diversity of microorganisms developed on ocean gliders were investigated using flow cytometry and Illumina MiSeq sequencing of 16S and 18S rRNA genes. Ocean gliders are autonomous buoyancy-driven underwater vehicles, equipped with sensors continuously recording physical, chemical, and biological parameters. Microbial biofilms were investigated on unprotected parts of the glider and surfaces coated with base, biocidal and chitosan paints. Biofilms on the glider were exposed to periodical oscillations of salinity, oxygen, temperature, pressure, depth and light, due to periodic ascending and descending of the vehicle. Among the unprotected surfaces, the highest microbial abundance was observed on the bottom of the glider’s body, while the lowest density was recorded on the glider’s nose. Antifouling paints had the lowest densities of microorganisms. Multidimensional analysis showed that the microbial communities formed on unprotected parts of the glider were significantly different from those on biocidal paint and in seawater

    Subsurface algal blooms of the northwestern Arabian Sea

    Get PDF
    In situ plankton sampling, combined with remotely sensed and ocean Seaglider observations, provided insight into the termination of the winter monsoon bloom and subsequent evolution into a subsurface fluorescence maximum in the northwestern Arabian Sea. This subsurface maximum gradually descended, presenting increased fluorescence between 25 and 55 m depth during the spring inter-monsoon season. Species diversity decreased by half within the deep fluorescence maximum relative to the bloom. The dinoflagellate Noctiluca scintillans dominated by biomass in all samples collected from the depth of the subsurface fluorescence maximum. We show that the subsurface algal bloom persists throughout inter-monsoon seasons, linking algal blooms initiated during the southwest and northeast monsoons. In situ samples showed a net decrease in Noctiluca cell size, illustrating a shift towards a deep chlorophyll maximum adapted community, but did not exhibit any increases in chlorophyll-containing endosymbionts. We propose that the plankton biomass and estimates of the northwestern Arabian Sea productivity are much greater than estimated previously through remote sensing observations, due to the persistence, intensity and vertical extent of the deep chlorophyll maximum which—using remote means—can only be estimated, but not measured
    corecore