1,759 research outputs found

    Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThe Cerrado is a biodiversity hotspot in central Brazil that represents the largest expanse of savanna in the Neotropics. Here, we aim to identify and delimit biogeographic districts within the Cerrado, to provide a geographic framework for conservation planning and scientific research prioritisation. We used data from 588 sites with tree species inventories distributed across the entire Cerrado. To identify districts, we clustered sites based on their similarity in tree species composition. To investigate why districts differ in composition, we 1) determined the proportion of tree species in different districts that derive from other biomes, to assess the influence of neighbouring biomes upon geographically marginal districts and 2) assayed key climatic differences between districts, to test the effect of environmental factors upon compositional differences. We found seven biogeographic districts within the Cerrado. Marginal districts have a large proportion of tree species characteristic of Amazonia and Atlantic Forest, but the Cerrado endemic species are also important. Further, districts differed significantly for multiple climatic variables. Finally, to provide a preliminary conservation assessment of the different districts, we assessed their rate of land conversion and current coverage by protected areas. We found that districts in the south and southwest of the Cerrado have experienced the greatest land conversion and are the least protected, while those in the north and northeast are less impacted and better protected. Overall, our results show how biogeographic analyses can contribute to conservation planning by giving clear guidelines on which districts merit greater conservation and management attention.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorConselho Nacional de Desenvolvimento Científico e Tecnológic

    Content of Lipids, Fatty Acids, Carbohydrates, and Proteins in Continental Cyanobacteria: A Systematic Analysis and Database Application

    Get PDF
    The lipid, fatty acid, protein, and carbohydrate contents in cyanobacterial strains and biomass can vary by orders of magnitude. Many publications (thousands of peer-reviewed articles) require more work to extract their precise concentration values (i.e., different units, inaccurate data), which makes them not easily exploitable. For this purpose, tables have been compiled from the literature data, including lipids, fatty acids, proteins, and carbohydrates composition and quantities in cyanobacteria. A lot of data (323) were collected after careful a literature search, according to selected criteria in order to distinguish separately cyanobacteria, and according to categories of genus and species and generate average values of the contents of these cell components. These data are exploited in a first systematic analysis of the content in types of strains. Our database can be a powerful tool for biologists, chemists, and environmental agencies to determine the potential concentration of high-value chemical building blocks directly from low-value bloom biomass, cell cultures, or debris in the sediment, offering the potential to minimize environmental waste and add value to the agro-industrial residues. The database can also support strategies for food manufacturers to develop new products with optimized properties for veterinarian applications

    The effects of a Variable IMF on the Chemical Evolution of the Galaxy

    Get PDF
    In this work we explore the effects of adopting an initial mass function (IMF) variable in time on the chemical evolution of the Galaxy. In order to do that we adopt a chemical evolution model which assumes two main infall episodes for the formation of the Galaxy. We study the effects on such a model of different IMFs. First, we use a theoretical one based on the statistical description of the density field arising from random motions in the gas. This IMF is a function of time as it depends on physical conditions of the site of star formation. We also investigate the behaviour of the model predictions using other variable IMFs, parameterized as a function of metallicity. Our results show that the theoretical IMF when applied to our model depends on time but such time variation is important only in the early phases of the Galactic evolution, when the IMF is biased towards massive stars. We also show that the use of an IMF which is a stronger function of time does not lead to a good agreement with the observational constraints suggesting that if the IMF varied this variation should have been small. Our main conclusion is that the G-dwarf metallicity distribution is best explained by infall with a large timescale and a constant IMF, since it is possible to find variable IMFs of the kind studied here, reproducing the G-dwarf metallicity but this worsens the agreement with other observational constraints.Comment: 7 pages, to appear in "The Chemical Evolution of the Milky Way: Stars vs Clusters", Vulcano, September 1999, F. Giovannelli and F. Matteucci eds. (Kluwer, Dordrecht) in pres

    A Brazilian regional basic diet-induced chronic malnutrition drives liver inflammation with higher ApoA-I activity in C57BL6J mice

    Get PDF
    Malnutrition is still considered endemic in many developing countries. Malnutrition-enteric infections may cause lasting deleterious effects on lipid metabolism, especially in children living in poor settings. The regional basic diet (RBD), produced to mimic the Brazilian northeastern dietary characteristics (rich in carbohydrate and low in protein) has been used in experimental malnutrition models, but few studies have explored the effect of chronic RBD on liver function, a central organ involved in cholesterol metabolism. This study aimed to investigate whether RBD leads to liver inflammatory changes and altered reverse cholesterol metabolism in C57BL6/J mice compared to the control group, receiving a standard chow diet. To evaluate liver inflammation, ionized calcium-binding adapter protein-1 (IBA-1) positive cell counting, interleukin (IL)-1b immunohistochemistry, and tumor necrosis factor (TNF)-a and IL-10 transcription levels were analyzed. In addition, we assessed reverse cholesterol transport by measuring liver apolipoprotein (Apo)E, ApoA-I, and lecithin-cholesterol acyltransferase (LCAT) by RT-PCR. Furthermore, serum alanine aminotransferase (ALT) was measured to assess liver function. RBD markedly impaired body weight gain compared with the control group (Po0.05). Higher hepatic TNF-a (Po0.001) and IL-10 (Po0.01) mRNA levels were found in RBD-challenged mice, although without detectable non-alcoholic fatty liver disease. Marked IBA-1 immunolabeling and increased number of positive-IBA-1 cells (presumably Kupffer cells) were found in the undernourished group. No statistical difference in serum ALT was found. There was also a significant increase in ApoA-I mRNA expression in the undernourished group, but not ApoE and LCAT, compared with the control. Altogether our findings suggested that chronic RBD-induced malnutrition leads to liver inflammation with increased ApoA-I activity

    The origin of dust in galaxies revisited: the mechanism determining dust content

    Full text link
    The origin of cosmic dust is a fundamental issue in planetary science. This paper revisits the origin of dust in galaxies, in particular, in the Milky Way, by using a chemical evolution model of a galaxy composed of stars, interstellar medium, metals (elements heavier than helium), and dust. We start from a review of time-evolutionary equations of the four components, and then, we present simple recipes for the stellar remnant mass and yields of metal and dust based on models of stellar nucleosynthesis and dust formation. After calibrating some model parameters with the data from the solar neighborhood, we have confirmed a shortage of the stellar dust production rate relative to the dust destruction rate by supernovae if the destruction efficiency suggested by theoretical works is correct. If the dust mass growth by material accretion in molecular clouds is active, the observed dust amount in the solar neighborhood is reproduced. We present a clear analytic explanation of the mechanism for determining dust content in galaxies after the activation of accretion growth: a balance between accretion growth and supernova destruction. Thus, the dust content is independent of the uncertainty of the stellar dust yield after the growth activation. The timing of the activation is determined by a critical metal mass fraction which depends on the growth and destruction efficiencies. The solar system formation seems to have occurred well after the activation and plenty of dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure

    Tri-n-butyltin Hydride-Mediated Radical Reactions of ortho- and meta-Iodobenzamides to Synthesize Benzomacrolactams. Surprising Formation of Biphenyl Compounds from meta-Regioisomers

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Reactions of methyl 4-O-allyl-2,3-di-O-benzyl-6-deoxy-6-(3-iodobenzoylamino)-alpha-D-galactopyranoside, its gluco epimer, methyl 2,3-di-O-benzyl-6-deoxy-6-(3-iodobenzoylamino)4-O-(1-pentenyl)-alpha-D-glucopyranoside and its ortho-regioisomer with tri-n-butyltin hydride were performed in different conditions. Depending on reaction conditions the three meta-iodo isomers gave a surprising amount of biphenyl compounds. The 2-iodo isomer led only to the undesired but expected hydrogenolysis product. No cyclized products were isolated in all the reactions. The structures of the new biphenyl products were elucidated by (1)H and (13)C NMR spectroscopy, DEPT, COSY, HMQC and HMBC experiments and ESI-MS/MS. Mechanisms for the formation of these new biphenyl derivatives and hypotheses to explain the different outcomes for radical reactions of 3- or 2-iodobenzamides were presented.20815041514Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Synergy of extreme drought and shrub invasion reduce ecosystem functioning and resilience in water-limited climates

    Get PDF
    Extreme drought events and plant invasions are major drivers of global change that can critically affect ecosystem functioning and alter ecosystem-atmosphere exchange. Invaders are expanding worldwide and extreme drought events are projected to increase in frequency and intensity. However, very little is known on how these drivers may interact to affect the functioning and resilience of ecosystems to extreme events. Using a manipulative shrub removal experiment and the co-occurrence of an extreme drought event (2011/2012) in a Mediterranean woodland, we show that native shrub invasion and extreme drought synergistically reduced ecosystem transpiration and the resilience of key-stone oak tree species. Ecosystem transpiration was dominated by the water use of the invasive shrub Cistus ladanifer, which further increased after the extreme drought event. Meanwhile, the transpiration of key-stone tree species decreased, indicating a competitive advantage in favour of the invader. Our results suggest that in Mediterranean-type climates the invasion of water spending species and projected recurrent extreme drought events may synergistically cause critical drought tolerance thresholds of key-stone tree species to be surpassed, corroborating observed higher tree mortality in the invaded ecosystems. Ultimately, this may shift seasonally water limited ecosystems into less desirable alternative states dominated by water spending invasive shrubs
    corecore