39,495 research outputs found
Spectra of primordial fluctuations in two-perfect-fluid regular bounces
We introduce analytic solutions for a class of two components bouncing
models, where the bounce is triggered by a negative energy density perfect
fluid. The equation of state of the two components are constant in time, but
otherwise unrelated. By numerically integrating regular equations for scalar
cosmological perturbations, we find that the (would be) growing mode of the
Newtonian potential before the bounce never matches with the the growing mode
in the expanding stage. For the particular case of a negative energy density
component with a stiff equation of state we give a detailed analytic study,
which is in complete agreement with the numerical results. We also perform
analytic and numerical calculations for long wavelength tensor perturbations,
obtaining that, in most cases of interest, the tensor spectral index is
independent of the negative energy fluid and given by the spectral index of the
growing mode in the contracting stage. We compare our results with previous
investigations in the literature.Comment: 11 pages, 5 figure
Explosion of smoothness for conjugacies between multimodal maps
Let and be smooth multimodal maps with no periodic attractors and no
neutral points. If a topological conjugacy between and is
at a point in the nearby expanding set of , then is a smooth
diffeomorphism in the basin of attraction of a renormalization interval of .
In particular, if and are unimodal maps and
is at a boundary of then is in .Comment: 22 page
Effective action in DSR1 quantum field theory
We present the one-loop effective action of a quantum scalar field with DSR1
space-time symmetry as a sum over field modes. The effective action has real
and imaginary parts and manifest charge conjugation asymmetry, which provides
an alternative theoretical setting to the study of the particle-antiparticle
asymmetry in nature.Comment: 8 page
Soft X-ray emission in kink-unstable coronal loops
Solar flares are associated with intense soft X-ray emission generated by the
hot flaring plasma. Kink unstable twisted flux-ropes provide a source of
magnetic energy which can be released impulsively and account for the flare
plasma heating. We compute the temporal evolution of the thermal X-ray emission
in kink-unstable coronal loops using MHD simulations and discuss the results of
with respect to solar flare observations. The model consists of a highly
twisted loop embedded in a region of uniform and untwisted coronal magnetic
field. We let the kink instability develop, compute the evolution of the plasma
properties in the loop (density, temperature) without accounting for mass
exchange with the chromosphere. We then deduce the X-ray emission properties of
the plasma during the whole flaring episode. During the initial phase of the
instability plasma heating is mostly adiabatic. Ohmic diffusion takes over as
the instability saturates, leading to strong and impulsive heating (> 20 MK),
to a quick enhancement of X-ray emission and to the hardening of the thermal
X-ray spectrum. The temperature distribution of the plasma becomes broad, with
the emission measure depending strongly on temperature. Significant emission
measures arise for plasma at temperatures T > 9 MK. The magnetic flux-rope then
relaxes progressively towards a lower energy state as it reconnects with the
background flux. The loop plasma suffers smaller sporadic heating events but
cools down conductively. The total thermal X-ray emission slowly fades away
during this phase, and the high temperature component of emission measure
distribution converges to the power-law distribution . The
amount of twist deduced directly from the X-ray emission patterns is
considerably lower than the maximum magnetic twist in the simulated flux-ropes.Comment: submitted to A&
Coupling the solar surface and the corona: coronal rotation, Alfv\'en wave-driven polar plumes
The dynamical response of the solar corona to surface and sub-surface
perturbations depends on the chromospheric stratification, and specifically on
how efficiently these layers reflect or transmit incoming Alfv\'en waves. While
it would be desirable to include the chromospheric layers in the numerical
simulations used to study such phenomena, that is most often not feasible. We
defined and tested a simple approximation allowing the study of coronal
phenomena while taking into account a parametrised chromospheric reflectivity.
We addressed the problems of the transmission of the surface rotation to the
corona and that of the generation of polar plumes by Alfv\'en waves (Pinto et
al., 2010, 2011). We found that a high (yet partial) effective chromospheric
reflectivity is required to properly describe the angular momentum balance in
the corona and the way the surface differential rotation is transmitted
upwards. Alfv\'en wave-driven polar plumes maintain their properties for a wide
range of values for the reflectivity, but they become bursty (and eventually
disrupt) when the limit of total reflection is attained.Comment: Solar Wind 13: Proceedings of the Thirteenth International Solar Wind
Conferenc
Relativistic deuteron structure function at large Q^2
The deuteron deep inelastic unpolarized structure function F_2^D is
calculated using the Wilson operator product expansion method. The long
distance behaviour, related to the deuteron bound state properties, is
evaluated using the Bethe-Salpeter equation with one particle on mass shell.
The calculation of the ratio F_2^D/F_2^N is compared with other convolution
models showing important deviations in the region of large x. The implications
in the evaluation of the neutron structure function from combined data on
deuterons and protons are discussed.Comment: 7 pages, 1 ps figure, RevTeX source, 1 tar.gz file. Submited to
Physical Letter
Non-Invasive Measurement of Frog Skin Reflectivity in High Spatial Resolution Using a Dual Hyperspectral Approach
Background:Most spectral data for the amphibian integument are limited to the visible spectrum of light and have been collected using point measurements with low spatial resolution. In the present study a dual camera setup consisting of two push broom hyperspectral imaging systems was employed, which produces reflectance images between 400 and 2500 nm with high spectral and spatial resolution and a high dynamic range.Methodology/Principal Findings:We briefly introduce the system and document the high efficiency of this technique analyzing exemplarily the spectral reflectivity of the integument of three arboreal anuran species (Litoria caerulea, Agalychnis callidryas and Hyla arborea), all of which appear green to the human eye. The imaging setup generates a high number of spectral bands within seconds and allows non-invasive characterization of spectral characteristics with relatively high working distance. Despite the comparatively uniform coloration, spectral reflectivity between 700 and 1100 nm differed markedly among the species. In contrast to H. arborea, L. caerulea and A. callidryas showed reflection in this range. For all three species, reflectivity above 1100 nm is primarily defined by water absorption. Furthermore, the high resolution allowed examining even small structures such as fingers and toes, which in A. callidryas showed an increased reflectivity in the near infrared part of the spectrum.Conclusion/Significance:Hyperspectral imaging was found to be a very useful alternative technique combining the spectral resolution of spectrometric measurements with a higher spatial resolution. In addition, we used Digital Infrared/Red-Edge Photography as new simple method to roughly determine the near infrared reflectivity of frog specimens in field, where hyperspectral imaging is typically difficult. © 2013 Pinto et al
- …
