231 research outputs found

    High-throughput testing in head and neck squamous cell carcinoma identifies agents with preferential activity in human papillomavirus-positive or negative cell lines.

    Get PDF
    Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs. HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC

    TAM family receptors in conjunction with MAPK signalling are involved in acquired resistance to PI3Kα inhibition in head and neck squamous cell carcinoma.

    Get PDF
    BACKGROUND: Aberrant activation of the phosphatidylinositol 3-kinase (PI3K) pathway is common in many malignancies, including head and neck squamous cell carcinoma (HNSCC). Despite pre-clinical and clinical studies, outcomes from targeting the PI3K pathway have been underwhelming and the development of drug resistance poses a significant barrier to patient treatment. In the present study, we examined mechanisms of acquired resistance to the PI3Kα inhibitor alpelisib (formerly BYL719) in HNSCC cell lines and patient-derived xenografts (PDXs). METHODS: Five unique PDX mouse models and three HNSCC cell lines were used. All cell lines and xenografts underwent genomic characterization prior to study. Serial drug treatment was conducted in vitro and in vivo to develop multiple, clinically-significant models of resistance to alpelisib. We then used reverse phase protein arrays (RPPAs) to profile the expression of proteins in parental and drug-resistant models. Top hits were validated by immunoblotting and immunohistochemistry. Flow cytometric analysis and RNA interference studies were then used to interrogate the molecular mechanisms underlying acquired drug resistance. RESULTS: Prolonged treatment with alpelisib led to upregulation of TAM family receptor tyrosine kinases TYRO3 and AXL. Importantly, a significant shift in expression of both TYRO3 and AXL to the cell surface was detected in drug-resistant cells. Targeted knockdown of TYRO3 and AXL effectively re-sensitized resistant cells to PI3Kα inhibition. In vivo, resistance to alpelisib emerged following 20-35 days of treatment in all five PDX models. Elevated TYRO3 expression was detected in drug-resistant PDX tissues. Downstream of TYRO3 and AXL, we identified activation of intracellular MAPK signalling. Inhibition of MAPK signalling also re-sensitized drug-resistant cells to alpelisib. CONCLUSIONS: We have identified TYRO3 and AXL receptors to be key mediators of resistance to alpelisib, both in vitro and in vivo. Our findings suggest that pan-TAM inhibition is a promising avenue for combinatorial or second-line therapy alongside PI3Kα inhibition. These findings advance our understanding of the role TAM receptors play in modulating the response of HNSCC to PI3Kα inhibition and suggest a means to prevent, or at least delay, resistance to PI3Kα inhibition in order to improve outcomes for HNSCC patients

    Lestaurtinib is a potent inhibitor of anaplastic thyroid cancer cell line models

    Get PDF
    Anaplastic thyroid cancer (ATC) is a rare and lethal human malignancy with no known effective therapies in the majority of cases. Despite the use of conventional treatments such as chemotherapy, radiation and surgical resection, this disease remains almost universally fatal. In the present study, we identified the JAK2 inhibitor Lestaurtinib as a potent compound when testing against 13 ATC cell lines. Lestaurtinib demonstrated a potent antiproliferative effect in vitro at nanomolar concentrations. Furthermore, Lestaurtinib impeded cell migration and the ability to form colonies from single cells using scratch-wound and colony formation assays, respectively. Flow cytometry was used for cell cycle analysis following drug treatment and demonstrated arrest at the G2/M phase of the cell cycle, indicative of a cytostatic effect. In vivo studies using the chick chorioallantoic membrane xenograft models demonstrated that treatment with Lestaurtinib resulted in a significant decrease in endpoint tumor volume and vascularity using power Doppler ultrasound imaging. Overall, this study provides evidence that Lestaurtinib is a potent antiproliferative agent with potential antiangiogenic activity that warrants further investigation as a targeted therapy for ATC

    Distinct mRNA and protein interactomes highlight functional differentiation of major eIF4F-like complexes from Trypanosoma brucei

    Get PDF
    Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes

    Correlação de Spearman aplicada ao estudo de adaptabilidade e estabilidade em genótipos de alfafa

    Get PDF
    Este trabalho teve por objetivo propor uma nova metodologia, baseada no coeficiente de correlação de Spearman para o estudo da adaptabilidade e estabilidade fenotípica de genótipos de alfafa. Além disso, os resultados foram comparados com os obtidos pela metodologia baseada no teste dos sinais. Para tanto, foram utilizados dados provenientes de um experimento em blocos casualizados com 2 repetições, que constituiu-se da avaliação da produção de matéria seca de 92 cultivares de alfafa em 20 cortes, realizados no período de novembro de 2004 a junho de 2006 no Campo Experimental da Embrapa Pecuária Sudeste - São Carlos/SP. Os resultados encontrados mostram que o coeficiente de correlação de Spearman é eficiente para o estudo de adaptabilidade e estabilidade fenotípica, sendo possível classificar os cultivares conforme o interesse do estudo. Ademais, quando comparado com a metodologia baseado no teste dos sinais, o mesmo se mostra mais eficiente na discriminação de genótipos

    Circulating biomarkers of cardiovascular disease are related to aneurysm volume in abdominal aortic aneurysm

    Get PDF
    Background: Surveillance programs in abdominal aortic aneurysms (AAA) are mainly based on imaging and leave room for improvement to timely identify patients at risk for AAA growth. Many biomarkers are dysregulated in patients with AAA, which fuels interest in biomarkers as indicators of disease progression. We examined associations of 92 cardiovascular disease (CVD)-related circulating biomarkers with AAA and sac volume. Methods: In a cross-sectional analysis, we separately investigated (1) 110 watchful waiting (WW) patients (undergoing periodic surveillance imaging without planned intervention) and (2) 203 patients after endovascular aneurysm repair (EVAR). The Cardiovascular Panel III (Olink Proteomics AB, Sweden) was used to measure 92 CVD-related circulating biomarkers. We used cluster analyses to investigate protein-based subphenotypes, and linear regression to examine associations of biomarkers with AAA and sac volume on CT scans. Results: Cluster analyses revealed two biomarker-based subgroups in both WW and EVAR patients, with higher levels of 76 and 74 proteins, respectively, in one subgroup versus the other. In WW patients, uPA showed a borderline significant association with AAA volume. Adjusting for clinical characteristics, there was a difference of −0.092 (−0.148, −0.036) loge mL in AAA volume per SD uPA. In EVAR patients, after multivariable adjustment, four biomarkers remained significantly associated with sac volume. The mean effects on sac volume per SD difference were: LDLR: −0.128 (−0.212, −0.044), TFPI: 0.139 (0.049, 0.229), TIMP4: 0.110 (0.023, 0.197), IGFBP-2: 0.103 (0.012, 0.194). Conclusion: LDLR, TFPI, TIMP4, and IGFBP-2 were independently associated with sac volume after EVAR. Subgroups of patients with high levels of the majority of CVD-related biomarkers emphasize the intertwined relationship between AAA and CVD. ClinicalTrials.gov Identifier: NCT03703947.</p

    Mutational analysis of head and neck squamous cell carcinoma stratified by smoking status.

    Get PDF
    Smoking has historically been recognized as a negative prognostic factor in head and neck squamous cell carcinoma (HNSCC). This study aimed to assess the mutational differences between heavy smokers (\u3e20 pack years) and never smokers among the HNSCC patients within The Cancer Genome Atlas (TCGA). Single nucleotide variation and copy number aberration differences between heavy smokers and never smokers were compared within human papillomavirus-positive (HPV-positive) (n = 67) and HPV-negative (n = 431) TCGA cohorts with HNSCC, and the impact of these mutations on survival were assessed. No genes were differentially mutated between smoking and never-smoking patients with HPV-positive tumors. By contrast, in HPV-negative tumors, NSD1 and COL1A11 were found to be more frequently mutated in heavy smokers, while CASP8 was more frequently altered in never smokers. HPV-negative patients with NSD1 mutations experienced significantly improved overall survival compared with NSD1 WT patients. This improved prognosis was validated in an independent cohort of 77 oral cavity cancer patients and a meta-analysis that included 2 additional data sets (688 total patients, hazard ratio for death 0.44, 95% CI, 0.30-0.65). NSD1 mutations are more common in HPV-negative heavy smokers, define a cohort with favorable prognosis, and may represent a clinically useful biomarker to guide treatment deintensification for HPV-negative patients

    Do brain networks evolve by maximizing their information flow capacity?

    Get PDF
    We propose a working hypothesis supported by numerical simulations that brain networks evolve based on the principle of the maximization of their internal information flow capacity. We find that synchronous behavior and capacity of information flow of the evolved networks reproduce well the same behaviors observed in the brain dynamical networks of Caenorhabditis elegans and humans, networks of Hindmarsh-Rose neurons with graphs given by these brain networks. We make a strong case to verify our hypothesis by showing that the neural networks with the closest graph distance to the brain networks of Caenorhabditis elegans and humans are the Hindmarsh-Rose neural networks evolved with coupling strengths that maximize information flow capacity. Surprisingly, we find that global neural synchronization levels decrease during brain evolution, reflecting on an underlying global no Hebbian-like evolution process, which is driven by no Hebbian-like learning behaviors for some of the clusters during evolution, and Hebbian-like learning rules for clusters where neurons increase their synchronization
    corecore