8 research outputs found
Marine Biofouling: A European Database for the Marine Renewable Energy Sector
Biofouling is a major problem shared among all maritime sectors employing submerged structures where it leads to substantially increased costs and lowered operational lifespans if poorly addressed. Insight into the ongoing processes at the relevant marine locations is key to effective management of biofouling. Of specific concern for the marine renewable energy (MRE) sector is the fact that information on biofouling composition and magnitude across geographies is dispersed throughout published papers and consulting reports. To enable rapid access to relevant key biofouling events the present work describes a European biofouling database to support the MRE sector and other maritime industries. The database compiles in one document qualitative and quantitative data for challenging biofouling groups, including non-native species associated with MRE and related marine equipment, in different European Ecoregions. It provides information on the occurrence of fouling species and data on key biofouling parameters, such as biofouling thickness and weight. The database aims to aid the MRE sector and offshore industries in understanding which biofouling communities their devices are more susceptible to at a given site, to facilitate informed decisions. In addition, the biofouling mapping is useful for the development of biosecurity risk management plans as well as academic research
A new flow-through bioassay for testing low-emission antifouling coatings
Current antifouling (AF) technologies are based on the continuous release of biocides into the water, and consequently discharge into the environment. Major efforts to develop more environmentally friendly coatings require efficient testing in laboratory assays, followed by field studies. Barnacles are important fouling organisms worldwide, increasing hydrodynamic drag on ships and damaging coatings on underwater surfaces, and thus are extensively used as models in AF research, mostly in static, laboratory-based systems. Reliable flow-through test assays for the screening of biocide-containing AF paints, however, are rare. Herein, a flow-through bioassay was developed to screen for diverse low-release biocide paints, and to evaluate their effects on pre- and post-settlement traits in barnacles. The assay distinguishes between the effects from direct surface contact and bulk-water effects, which are crucial when developing low-emission AF coatings. This flow-through bioassay adds a new tool for rapid laboratory-based first-stage screening of candidate compounds and novel AF formulations
Low biocide emission antifouling based on a novel route of barnacle intoxication
Marine biofouling can be defined as the colonization of man-made surfaces in seawater by microscopic and macroscopic organisms. This phenomenon can result in great loss of function and effectiveness both for cruising ships and for static constructions. Of special concern are the negative effects of hard fouler such as barnacles, which cause increased drag resistance resulting in increases in fuel consumption, and disruption of the corrosion protective layer of marine vessels and constructions. Present biocide-based antifouling strategies are based on a continuous exposure of biocides at the film/water interface and consequently release into the environment if the antifouling efficacy is to be maintained. Such biocide-based solutions can therefore not be regarded as sustainable.
The aim of this thesis is to describe the possibility to design biocide antifouling coatings based on a new strategy. Instead of releasing the bioactive molecule to the bulk water the biocide will be “entrapped” in the paint matrix and only after stimuli by organism interaction with the paint surface intoxication will take place. It was shown (Paper I) that using an experimental formulation, containing ivermectin, both in static panels and on boats, long lasting protection against barnacles was obtained. Moreover, using two model surfaces (Paper II), it was possible to separate and study the different contributions to the antifouling efficacy, finding that the low leaching of ivermectin had no contribution at all while surface’s modulus of the coating was the key factor. This supports the validity of the contact active antifouling hypothesis, rather than emission based. In (Paper III) we could follow the fate of barnacle growing on ivermectin containing coatings, and both field and laboratory tests could demonstrate that the intoxication of barnacles start when the juvenile organism reach ca. 0.6-0.7mm in diameter. Electronic microscopy images on the panels after the test, demonstrate that on control paint (no biocide) the juvenile barnacles (0.6-0.7mm diameter) already leaves imprint or penetration marks on the rosin based coatings. The distribution of ivermectin in the dry film seemed to be related with enhancement of barnacles contact intoxication. This was studied by fluorescence microscopy in (Paper I) and by the use ToF-SIMS in (Paper IV). This particular analytic method gives the possibility to follow organic biocides in paint film without the need of labelling or modify the biocide molecule in any extent.
The entrapped antifouling strategy opens up the possibility to achieve long term antifouling (>10 years) as there is no need to use erosive binders. Moreover, this system might also find it uses in marine constructions and other fields where maintenance is difficult
Rheological, Mechanical and Morphological Characterization of Fillers in the Nautical Field: The Role of Dispersing Agents on Composite Materials
Coatings have a fundamental role in covering the external surface of yachts by acting both as protective and aesthetic layers. In particular, fillers represent the essential layer from the point of view of mechanical properties and consist of a polymeric matrix, different extenders and additives, and dispersing agents, with the latter having the role to provide good extender-matrix compatibility. In the present work, the effects of dispersing agents with an ionic or steric action on the interactions between hollow glass microspheres and an epoxy-polyamide resin are evaluated. Un-crosslinked filler materials are studied via rheological tests, whereas the mechanical and morphological properties of the crosslinked samples are assessed. The results clearly indicate that steric dispersing agents provide a much greater compatibility effect compared to ionic ones, owing to their steric hindrance capability, thus leading to better-performing filler materials with a less-marked Payne effect, which is here proved to be an efficient tool to provide information concerning the extent of component interactions in nautical fillers. To the best of our knowledge, this work represents the first attempt to deeply understand the role of dispersing agents, which are until now empirically used in the preparation of fillers
Affinity states of biocides determine bioavailability and release rates in marine paints
A challenge for the next generation marine antifouling (AF) paints is to deliver minimum amounts of biocides to the environment. The candidate AF compound medetomidine is here shown to be released at very low concentrations, ie ng ml(-1) day(-1). Moreover, the release rate of medetomidine differs substantially depending on the formulation of the paint, while inhibition of barnacle settlement is independent of release to the ambient water, ie the paint with the lowest release rate was the most effective in impeding barnacle colonisation. This highlights the critical role of chemical interactions between biocide, paint carrier and the solid/aqueous interface for release rate and AF performance. The results are discussed in the light of differential affinity states of the biocide, predicting AF activity in terms of a high surface affinity and preserved bioavailability. This may offer a general framework for the design of low-release paint systems using biocides for protection against biofouling on marine surfaces