346 research outputs found

    Active bacterial core surveillance of the emerging infections program network.

    Get PDF
    Active Bacterial Core surveillance (ABCs) is a collaboration between the Centers for Disease Control and Prevention and several state health departments and universities participating in the Emerging Infections Program Network. ABCs conducts population-based active surveillance, collects isolates, and performs studies of invasive disease caused by Streptococcus pneumoniae, group A and group B Streptococcus, Neisseria meningitidis, and Haemophilus influenzae for a population of 17 to 30 million. These pathogens caused an estimated 97,000 invasive cases, resulting in 10,000 deaths in the United States in 1998. Incidence rates of these pathogens are described. During 1998, 25% of invasive pneumococcal infections in ABCs areas were not susceptible to penicillin, and 13.3% were not susceptible to three classes of antibiotics. In 1998, early-onset group B streptococcal disease had declined by 65% over the previous 6 years. More information on ABCs is available at www.cdc.gov/ncidod/dbmd/abcs. ABCs specimens will soon be available to researchers through an archive

    On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions

    Full text link
    We consider the "Mandelbrot set" MM for pairs of complex linear maps, introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and others. It is defined as the set of parameters λ\lambda in the unit disk such that the attractor AλA_\lambda of the IFS {λz1,λz+1}\{\lambda z-1, \lambda z+1\} is connected. We show that a non-trivial portion of MM near the imaginary axis is contained in the closure of its interior (it is conjectured that all non-real points of MM are in the closure of the set of interior points of MM). Next we turn to the attractors AλA_\lambda themselves and to natural measures νλ\nu_\lambda supported on them. These measures are the complex analogs of much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os and Garsia, we demonstrate how certain classes of complex algebraic integers give rise to singular and absolutely continuous measures νλ\nu_\lambda. Next we investigate the Hausdorff dimension and measure of AλA_\lambda, for λ\lambda in the set MM, for Lebesgue-a.e. λ\lambda. We also obtain partial results on the absolute continuity of νλ\nu_\lambda for a.e. λ\lambda of modulus greater than 1/2\sqrt{1/2}.Comment: 22 pages, 5 figure

    A two-domain elevator mechanism for sodium/proton antiport

    Get PDF
    Sodium/proton (Na+/H+) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis1. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets2. The best understood model system for Na+/H+ antiport is NhaA from Escherichia coli1, 3, for which both electron microscopy and crystal structures are available4, 5, 6. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein1, 4. Like many Na+/H+ antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur7. The only reported NhaA crystal structure so far is of the low pH inactivated form4. Here we describe the active-state structure of a Na+/H+ antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding1, 8, 9 directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second3, Na+/H+ antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general

    Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion

    Get PDF
    We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design

    Proposed therapeutic range of treosulfan in reduced toxicity pediatric allogeneic hematopoietic stem cell transplant conditioning: results from a prospective trial

    Get PDF
    Treosulfan is given off‐label in pediatric allogeneic hematopoietic stem cell transplant. This study investigated treosulfan's pharmacokinetics (PKs), efficacy, and safety in a prospective trial. Pediatric patients (n = 87) receiving treosulfan‐fludarabine conditioning were followed for at least 1 year posttransplant. PKs were described with a two‐compartment model. During follow‐up, 11 of 87 patients died and 12 of 87 patients had low engraftment (≤ 20% myeloid chimerism). For each increase in treosulfan area under the curve from zero to infinity (AUC(0‐∞)) of 1,000 mg hour/L the hazard ratio (95% confidence interval) for mortality increase was 1.46 (1.23–1.74), and the hazard ratio for low engraftment was 0.61 (0.36–1.04). A cumulative AUC(0‐∞) of 4,800 mg hour/L maximized the probability of success (> 20% engraftment and no mortality) at 82%. Probability of success with AUC(0‐∞) between 80% and 125% of this target were 78% and 79%. Measuring PK at the first dose and individualizing the third dose may be required in nonmalignant disease

    Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells

    Get PDF
    Autologous T cells engineered to express chimeric antigen receptor against the B cell antigen CD19 (CAR19) are achieving marked leukemic remissions in early-phase trials but can be difficult to manufacture, especially in infants or heavily treated patients. We generated universal CAR19 (UCART19) T cells by lentiviral transduction of non-human leukocyte antigen-matched donor cells and simultaneous transcription activator-like effector nuclease (TALEN)-mediated gene editing of T cell receptor α chain and CD52 gene loci. Two infants with relapsed refractory CD19(+) B cell acute lymphoblastic leukemia received lymphodepleting chemotherapy and anti-CD52 serotherapy, followed by a single-dose infusion of UCART19 cells. Molecular remissions were achieved within 28 days in both infants, and UCART19 cells persisted until conditioning ahead of successful allogeneic stem cell transplantation. This bridge-to-transplantation strategy demonstrates the therapeutic potential of gene-editing technology

    Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions

    Get PDF
    Lymph node stromal cells (LNSCs) can induce potent, antigen-specific T cell tolerance under steady-state conditions. Although expression of various peripheral tissue–restricted antigens (PTAs) and presentation to naive CD8+ T cells has been demonstrated, the stromal subsets responsible have not been identified. We report that fibroblastic reticular cells (FRCs), which reside in the T cell zone of the LN, ectopically express and directly present a model PTA to naive T cells, inducing their proliferation. However, we found that no single LNSC subset was responsible for PTA expression; rather, each subset had its own characteristic antigen display. Studies to date have concentrated on PTA presentation under steady-state conditions; however, because LNs are frequently inflammatory sites, we assessed whether inflammation altered stromal cell–T cell interactions. Strikingly, FRCs showed reduced stimulation of T cells after Toll-like receptor 3 ligation. We also characterize an LNSC subset expressing the highest levels of autoimmune regulator, which responds potently to bystander inflammation by up-regulating PTA expression. Collectively, these data show that diverse stromal cell types have evolved to constitutively express PTAs, and that exposure to viral products alters the interaction between T cells and LNSCs

    A trial platform to develop a tailored theory-based intervention to improve professional practice in the disclosure of a diagnosis of dementia: Study protocol [ISRCTN15871014]

    Get PDF
    BACKGROUND: For people with dementia, care should include an explanation of the diagnosis to individuals and their carers, and information about the likely prognosis and possible packages of care. However, this is neither routine nor inevitable, and there is wide variation in the practice of disclosure. The aim of this study is to develop a tailored theory-based intervention to promote appropriate disclosure of diagnosis of dementia. METHODS: There are three objectives. Objective 1 is to define and develop an appropriate model of disclosure; this will be addressed using a multidisciplinary consensus development process. Objective 2 is to identify factors that influence disclosure of diagnosis; a questionnaire based upon theoretical constructs from a range of behavioural theories will be developed and members of old age mental health teams will be surveyed. The analysis will identify those factors that best predict intention to disclose a diagnosis to a person with dementia. Objective 3 is to develop and pilot test a theory-based intervention to promote disclosure of diagnosis that targets attitudes, beliefs and actions most amenable to change. Objective 3 will use the results of Objectives 1&2 to design and pilot test an intervention to improve the process of and increase the proportion of individuals receiving a diagnosis of dementia, for members of old age mental health teams. This work will lead to a proposal for a randomised controlled trial of the intervention

    Brain structural differences in children with fetal alcohol spectrum disorder and its subtypes

    Get PDF
    IntroductionThe teratogenic effects of prenatal alcohol exposure (PAE) have been examined in animal models and humans. The current study extends the prior literature by quantifying differences in brain structure for individuals with a fetal alcohol spectrum disorder (FASD) compared to typically developing controls, as well as examining FASD subtypes. We hypothesized the FASD group would reveal smaller brain volume, reduced cortical thickness, and reduced surface area compared to controls, with the partial fetal alcohol syndrome (pFAS)/fetal alcohol syndrome (FAS) subtypes showing the largest effects and the PAE/alcohol-related neurodevelopmental disorder (ARND) subtype revealing intermediate effects.MethodsThe sample consisted of 123 children and adolescents recruited from a single site including children with a diagnosis of FASD/PAE (26 males, 29 females) and controls (34 males, 34 females). Structural T1-weighted MRI scans were obtained on a 3T Trio TIM scanner and FreeSurfer v7.2 was used to quantify brain volume, cortical thickness, and surface area. Analyses examined effects by subgroup: pFAS/FAS (N = 32, Mage = 10.7 years, SEage = 0.79), PAE/ARND (N = 23, Mage = 10.8, SEage = 0.94), and controls (N = 68, Mage = 11.1, SEage = 0.54).ResultsTotal brain volume in children with an FASD was smaller relative to controls, but subtype analysis revealed only the pFAS/FAS group differed significantly from controls. Regional analyses similarly revealed reduced brain volume in frontal and temporal regions for children with pFAS/FAS, yet children diagnosed with PAE/ARND generally had similar volumes as controls. Notable differences to this pattern occurred in the cerebellum, caudate, and pallidum where children with pFAS/FAS and PAE/ARND revealed lower volume relative to controls. In the subset of participants who had neuropsychological testing, correlations between volume and IQ scores were observed. Goodness-of-Fit analysis by age revealed differences in developmental patterns (linear vs. quadratic) between groups in some cases.DiscussionThis study confirmed prior results indicating decreased brain volume in children with an FASD and extended the results by demonstrating differential effects by structure for FASD subtypes. It provides further evidence for a complex role of PAE in structural brain development that is likely related to the cognitive and behavioral effects experienced by children with an FASD

    A Small Molecule Inhibitor of PDK1/PLC gamma 1 Interaction Blocks Breast and Melanoma Cancer Cell Invasion

    Get PDF
    Strong evidence suggests that phospholipase Cγ1 (PLCγ1) is a suitable target to counteract tumourigenesis and metastasis dissemination. We recently identified a novel signalling pathway required for PLCγ1 activation which involves formation of a protein complex with 3-phosphoinositide-dependent protein kinase 1 (PDK1). In an effort to define novel strategies to inhibit PLCγ1-dependent signals we tested here whether a newly identified and highly specific PDK1 inhibitor, 2-O-benzyl-myo-inositol 1,3,4,5,6-pentakisphosphate (2-O-Bn-InsP5), could affect PDK1/PLCγ1 interaction and impair PLCγ1-dependent cellular functions in cancer cells. Here, we demonstrate that 2-O-Bn-InsP5 interacts specifically with the pleckstrin homology domain of PDK1 and impairs formation of a PDK1/PLCγ1 complex. 2-O-Bn-InsP5 is able to inhibit the epidermal growth factor-induced PLCγ1 phosphorylation and activity, ultimately resulting in impaired cancer cell migration and invasion. Importantly, we report that 2-O-Bn-InsP5 inhibits cancer cell dissemination in zebrafish xenotransplants. This work demonstrates that the PDK1/PLCγ1 complex is a potential therapeutic target to prevent metastasis and it identifies 2-O-Bn-InsP5 as a leading compound for development of anti-metastatic drugs
    corecore