56 research outputs found

    Hydrological influence on the evolution of a subtropical mangrove ecosystem during the late Holocene from Babitonga Bay, Brazil

    Get PDF
    Mangroves are key ecosystems which respond to global changes in tropical and subtropical regions worldwide. We describe late Holocene mangroves that established close to the southernmost limit (28°S) for this type of ecosystem in South America. Our findings are based on a C dated core obtained from Babitonga Bay, Santa Catarina State, Brazil (26°12′S, 48°33′W). Analysis of palynology, sedimentary facies, isotopic and elemental data shows that mangrove establishment took place ~500 yrs. B.C.E., following an increase in humidity, and expanded further during the Roman Warm Period and at the end of Dark Age Cold Period. Mangrove and precipitation proxies records appear to be sensitive to rainfall patterns imposed both by the expansion/retraction of the Intertropical Convergence Zone and also the interaction with the South Atlantic Subtropical Anticyclone which affects coastal region due to sea surface temperature variations.The authors thank the Coastal Dynamic Laboratory (LADIC-UFPA) , C-14 Laboratory of the Center for Nuclear Energy in Agriculture (CENA-USP) , University of Joinville (UNIVILLE) and Radiocarbon Laboratory (LAC-UFF) for all infrastructure and support. We also thank three anonymous Reviewers and Prof. H. Falcon-Lang for their constructive comments. The first and third author thanks Brazilian Council for Technology and Science-CNPq for fellowship (process 131813/2016-1 , 165911/2015-8 and 305074/2017-2 ). This study was financed by CNPq ( 445111/2014-3 , 405060/2013- 0 ) and FAPESP ( 2011/00995-7 , 2017/03304-1, and 2020/13715-1 ). This study also was financed in part by the Coordenação de Aperfeiçoamento de Pessoal Nível Superior – Brazil (CAPES) – Finance Code 001

    Viabilidade de ovos de Aedes aegypti (Diptera, Culicidae) em diferentes condições de armazenamento em Manaus, Amazonas, Brasil

    Get PDF
    The viability of Aedes aegypti eggs was assessed in the Amazon region. The eggs were maintained under different conditions: indoors (insectarium) and outdoors (natural environment), as well as in different storage types (plastic cup, paper envelope, plastic bag) for different days. Egg viability was measured as the mean of hatchings observed from egg-bearing sheets of filter paper immersed in water, using three sheets randomly selected from each storage type and at both sites. There were significant differences in the viability of Ae. aegypti eggs with respect to the location (F=30.40; DF=1; P<0.0001), storage type (F=17.66; DF=2; P<0.0001), and time of storage (F=49.56; DF=9; P<0.0001). The interaction between storage site versus storage type was also significant (F=15.96; DF=2; P<0.0001). A higher hatching mean was observed for the eggs kept in the insectarium than for those outdoors (32.38 versus 7.46). Hatching rates of egg batches stored for 12 to 61 days ranged between 84 and 90%. A reduction was observed between 89 and 118 days, with values of 63 and 48%, respectively. With respect to type of storage, mean egg hatching was higher for the eggs in plastic cups (44.46). It was concluded that the viability of the eggs of Ae. aegypti in the Amazon region remains high up to 4 months, after which it declines drastically, although in this study hatching occurred for up to 8 months in very low percentages. © 2017, Instituto Internacional de Ecologia. All rights reserved

    Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Achieving universal health coverage (UHC) involves all people receiving the health services they need, of high quality, without experiencing financial hardship. Making progress towards UHC is a policy priority for both countries and global institutions, as highlighted by the agenda of the UN Sustainable Development Goals (SDGs) and WHO's Thirteenth General Programme of Work (GPW13). Measuring effective coverage at the health-system level is important for understanding whether health services are aligned with countries' health profiles and are of sufficient quality to produce health gains for populations of all ages. Methods: Based on the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, we assessed UHC effective coverage for 204 countries and territories from 1990 to 2019. Drawing from a measurement framework developed through WHO's GPW13 consultation, we mapped 23 effective coverage indicators to a matrix representing health service types (eg, promotion, prevention, and treatment) and five population-age groups spanning from reproductive and newborn to older adults (>= 65 years). Effective coverage indicators were based on intervention coverage or outcome-based measures such as mortality-to-incidence ratios to approximate access to quality care; outcome-based measures were transformed to values on a scale of 0-100 based on the 2.5th and 97.5th percentile of location-year values. We constructed the UHC effective coverage index by weighting each effective coverage indicator relative to its associated potential health gains, as measured by disability-adjusted life-years for each location-year and population-age group. For three tests of validity (content, known-groups, and convergent), UHC effective coverage index performance was generally better than that of other UHC service coverage indices from WHO (ie, the current metric for SDG indicator 3.8.1 on UHC service coverage), the World Bank, and GBD 2017. We quantified frontiers of UHC effective coverage performance on the basis of pooled health spending per capita, representing UHC effective coverage index levels achieved in 2019 relative to country-level government health spending, prepaid private expenditures, and development assistance for health. To assess current trajectories towards the GPW13 UHC billion target-1 billion more people benefiting from UHC by 2023-we estimated additional population equivalents with UHC effective coverage from 2018 to 2023. Findings: Globally, performance on the UHC effective coverage index improved from 45.8 (95% uncertainty interval 44.2-47.5) in 1990 to 60.3 (58.7-61.9) in 2019, yet country-level UHC effective coverage in 2019 still spanned from 95 or higher in Japan and Iceland to lower than 25 in Somalia and the Central African Republic. Since 2010, sub-Saharan Africa showed accelerated gains on the UHC effective coverage index (at an average increase of 2.6% [1.9-3.3] per year up to 2019); by contrast, most other GBD super-regions had slowed rates of progress in 2010-2019 relative to 1990-2010. Many countries showed lagging performance on effective coverage indicators for non-communicable diseases relative to those for communicable diseases and maternal and child health, despite non-communicable diseases accounting for a greater proportion of potential health gains in 2019, suggesting that many health systems are not keeping pace with the rising non-communicable disease burden and associated population health needs. In 2019, the UHC effective coverage index was associated with pooled health spending per capita (r=0.79), although countries across the development spectrum had much lower UHC effective coverage than is potentially achievable relative to their health spending. Under maximum efficiency of translating health spending into UHC effective coverage performance, countries would need to reach 1398pooledhealthspendingpercapita(US1398 pooled health spending per capita (US adjusted for purchasing power parity) in order to achieve 80 on the UHC effective coverage index. From 2018 to 2023, an estimated 388.9 million (358.6-421.3) more population equivalents would have UHC effective coverage, falling well short of the GPW13 target of 1 billion more people benefiting from UHC during this time. Current projections point to an estimated 3.1 billion (3.0-3.2) population equivalents still lacking UHC effective coverage in 2023, with nearly a third (968.1 million [903.5-1040.3]) residing in south Asia. Interpretation: The present study demonstrates the utility of measuring effective coverage and its role in supporting improved health outcomes for all people-the ultimate goal of UHC and its achievement. Global ambitions to accelerate progress on UHC service coverage are increasingly unlikely unless concerted action on non-communicable diseases occurs and countries can better translate health spending into improved performance. Focusing on effective coverage and accounting for the world's evolving health needs lays the groundwork for better understanding how close-or how far-all populations are in benefiting from UHC
    corecore