47 research outputs found

    Amino Acid for Japanese Quails: Methodologies and Nutritional Requirement

    Get PDF
    The methodologies applied to chickens and laying hens, to determine the digestibility and requirement of protein and amino acids are used with quails, however, they need a more careful evaluation due to peculiarities inherent to the Coturnix genus, in order to provide consistent results. The nutritional requirements of the birds are determinate using the dose-response and the factorial method. Several mathematical models and techniques of diet formulation are allied to the dose-response method in determining nutritional requirements. The curvilinear (hyperbolic) models better portray population behaviour in response to increasing nutrient doses in diets. The reading model, allow a better estimation of the requirement, in relation to the mathematical models used in the dose-response method. The techniques of comparative slaughter and nitrogen balance are effective in determining the nutritional requirements of quails, however, the latter need to be corrected by the loss of nitrogen in the feathers in determining the requirements of crude protein and amino acids for maintenance. The protein-free diet, coupled with the industrial amino acid supplementation, provides more robust digestibility values, since it more effectively predicts the endogenous excretion pattern

    L-glutamine and L-glutamate in diets with different lactose levels for piglets weaned at 21 days of age

    Get PDF
    This study was developed to evaluate the effects of adding L-glutamine and L-glutamate in diets with no lactose or with 4.0 or 8.0% lactose inclusion for piglets weaned at 21 days old. One hundred and eight piglets with initial weight of 6.12±0.70 kg were allotted in a complete randomized block design, in a 3 × 2 factorial arrangement, with six treatments, six replicates, and three piglets per experimental unit. The experimental diets were supplied from 21 to 35 days. From 36 to 49 days, animals received the same diet with no lactose inclusion, but the animals in the treatments with L-glutamine + L-glutamate in the previous phase continued to receive diets containing these ingredients. There was no interaction between the level of lactose and the inclusion of L-glutamine + L-glutamate on the parameters evaluated. The levels of lactose did not affect the performance of piglets in either of the two periods. Adding L-glutamine and L-glutamate in the diet positively influenced the weight gain of pigs from 21 to 49 days of age and increased the villous height in the duodenum, jejunum and ileum. Inclusion of L-glutamine + L-glutamate in diets for piglets weaned at 21 days of age improves the performance and the intestinal mucosa morphology, regardless of lactose addition

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
    corecore