339 research outputs found

    Mechanisms for χcJϕϕ\chi_{cJ}\to \phi\phi Decays

    Full text link
    Exclusive decays of χcJ(J=0,2)\chi_{cJ}(J=0,2) into ϕϕ\phi\phi are investigated in the framework of perturbative quantum chromodynamics(pQCD) and \tpz quark pair creation model. The results show that these two mechanisms exhibit a quite different behavior in evaluating the decay width for the χc0\chi_{c0} and χc2\chi_{c2}. In pQCD method with nonrelativistic(NR) approximation, while the calculated \cxpp{2} decay width is comparable with measured one, the result for the \cxpp{0} decay width is suppressed and much smaller than experimental value. However, in \tpz quark pair creation model, the situation is reversed: the decay width of \cxpp{0} is greatly enhanced and can reproduce the large measured value, while the contribution to the \cxpp{2} decay width is small. The results suggest that while the pQCD mechanism is the dominant mechanism for \cxpp{2} decay, the \tpz quark pair creation mechanism is the dominant one for \cxpp{0} decay.Comment: 10 pages, 2 figure

    CP Test in J/Psi -> gamma phi phi Decay

    Full text link
    We propose to test CP symmetry in the decay \jp\to \gamma \phi\phi, for which large data sample exists at BESII, and a data sample of 101010^{10} J/ψJ/\psi's will be collected with BESIII and CLEO-C program. We suggest some CP asymmetries in this decay mode for CP test. Assuming that CP violation is introduced by the electric- and chromo-dipole moment of charm quark, these CP asymmetries can be predicted by using valence quark models. Our work shows a possible way to get information about the electric- and chromo-dipole moment of charm quark, which is little known. Our results show that with the current data sample of J/ψJ/\psi, electric- and chromo-dipole moment can be probed at order of 1014ecm10^{-14}e cm. In the near future with a 101010^{10} data sample, these moments can be probed at order of 1016ecm10^{-16}e cm.Comment: Misprints corrected. To appear in Phys. Lett.

    Molecular scale contact line hydrodynamics of immiscible flows

    Full text link
    From extensive molecular dynamics simulations on immiscible two-phase flows, we find the relative slipping between the fluids and the solid wall everywhere to follow the generalized Navier boundary condition, in which the amount of slipping is proportional to the sum of tangential viscous stress and the uncompensated Young stress. The latter arises from the deviation of the fluid-fluid interface from its static configuration. We give a continuum formulation of the immiscible flow hydrodynamics, comprising the generalized Navier boundary condition, the Navier-Stokes equation, and the Cahn-Hilliard interfacial free energy. Our hydrodynamic model yields interfacial and velocity profiles matching those from the molecular dynamics simulations at the molecular-scale vicinity of the contact line. In particular, the behavior at high capillary numbers, leading to the breakup of the fluid-fluid interface, is accurately predicted.Comment: 33 pages for text in preprint format, 10 pages for 10 figures with captions, content changed in this resubmissio

    Heavy Quarks on Anisotropic Lattices: The Charmonium Spectrum

    Get PDF
    We present results for the mass spectrum of ccˉc{\bar c} mesons simulated on anisotropic lattices where the temporal spacing ata_t is only half of the spatial spacing asa_s. The lattice QCD action is the Wilson gauge action plus the clover-improved Wilson fermion action. The two clover coefficients on an anisotropic lattice are estimated using mean links in Landau gauge. The bare velocity of light νt\nu_t has been tuned to keep the anisotropic, heavy-quark Wilson action relativistic. Local meson operators and three box sources are used in obtaining clear statistics for the lowest lying and first excited charmonium states of 1S0^1S_0, 3S1^3S_1, 1P1^1P_1, 3P0^3P_0 and 3P1^3P_1. The continuum limit is discussed by extrapolating from quenched simulations at four lattice spacings in the range 0.1 - 0.3 fm. Results are compared with the observed values in nature and other lattice approaches. Finite volume effects and dispersion relations are checked.Comment: 36 pages, 6 figur

    A Study of the Roper Resonance as a Hybrid State from J/ψJ/\psi Decays

    Full text link
    The structure of the Roper resonance as a hybrid baryon is investigated through studying the transitional amplitudes in J/psi-> p\barN*, N*\barN* decays. We begin with perturbative QCD to describe the dynamical process for the J/psi-> 3\bar q+3q decay to the lowest order of \alpha_s, and by extending the modified quark creation model to the J/psi energy region to describe the J/psi-> 3\bar q+3q +g process. The non-perturbative effects are incorporated by a simple quark model of baryons to evaluate the angular distribution parameters and decay widths for the processes J/psi-> pbar N*,N*bar N*. From fitting the decay width of J/psi->gamma p pbar to the experimental data, we extract the quark-pair creation strength g_I=15.40 GeV. Our numerical results for J/psi->pbar N*,N* bar N* decays show that the branching ratios for these decays are quite different if the Roper resonance is assumed to be a common 3q3q state or a pure hybrid state. For testing its mixing properties, we present a scheme to construct the Roper wave function by mixing |qqqg> state with a normal |qqq,2s> state. Under this picture, the ratios of the decay widths to that of the J/psi->p pbar decay are re-evaluated versus the mixing parameter. A test of the hybrid nature of the Roper resonance in J/psi decays is discussed.Comment: 18 pages,3 figures, To appear in Nuclear Physics

    The Pan-STARRS1 Medium-deep Survey: Star Formation Quenching in Group and Cluster Environments

    Get PDF
    We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ~0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density–color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    Measurements of the observed cross sections for e+ee^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eπ+ππ0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kπ0π0K^+K^-\pi^0\pi^0, 2(π+ππ0)2(\pi^+\pi^-\pi^0), K+Kπ+ππ0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Global Distribution of Rubella Virus Genotypes

    Get PDF
    Phylogenetic analysis of a collection of 103 E1 gene sequences from rubella viruses isolated from 17 countries from 1961 to 2000 confirmed the existence of at least two genotypes. Rubella genotype I (RGI) isolates, predominant in Europe, Japan, and the Western Hemisphere, segregated into discrete subgenotypes; intercontinental subgenotypes present in the 1960s and 1970s were replaced by geographically restricted subgenotypes after ~1980. Recently, active subgenotypes include one in the United States and Latin America, one in China, and a third that apparently originated in Asia and spread to Europe and North America, starting in 1997, indicating the recent emergence of an intercontinental subgenotype. A virus that potentially arose as a recombinant between two RGI subgenotypes was discovered. Rubella genotype II (RGII) showed greater genetic diversity than did RGI and may actually consist of multiple genotypes. RGII viruses were limited to Asia and Europe; RGI viruses were also present in most of the countries where RGII viruses were isolated

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψγϕϕγK+KKS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.240.02+0.030.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.030.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψγη(2225))Br(η(2225)ϕϕ)=(4.4±0.4±0.8)×104Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa
    corecore