77 research outputs found

    PeroxiBase: a database with new tools for peroxidase family classification

    Get PDF
    Peroxidases (EC 1.11.1.x), which are encoded by small or large multigenic families, are involved in several important physiological and developmental processes. They use various peroxides as electron acceptors to catalyse a number of oxidative reactions and are present in almost all living organisms. We have created a peroxidase database (http://peroxibase.isb-sib.ch) that contains all identified peroxidase-encoding sequences (about 6000 sequences in 940 organisms). They are distributed between 11 superfamilies and about 60 subfamilies. All the sequences have been individually annotated and checked. PeroxiBase can be consulted using six major interlink sections ‘Classes’, ‘Organisms’, ‘Cellular localisations’, ‘Inducers’, ‘Repressors’ and ‘Tissue types’. General documentation on peroxidases and PeroxiBase is accessible in the ‘Documents’ section containing ‘Introduction’, ‘Class description’, ‘Publications’ and ‘Links’. In addition to the database, we have developed a tool to classify peroxidases based on the PROSITE profile methodology. To improve their specificity and to prevent overlaps between closely related subfamilies the profiles were built using a new strategy based on the silencing of residues. This new profile construction method and its discriminatory capacity have been tested and validated using the different peroxidase families and subfamilies present in the database. The peroxidase classification tool called PeroxiScan is accessible at the following address: http://peroxibase.isb-sib.ch/peroxiscan.php

    Benznidazole biotransformation and multiple targets in <i>Trypanosoma</i> cruzi revealed by metabolomics

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The first line treatment for Chagas disease, a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi, involves administration of benznidazole (Bzn). Bzn is a 2-nitroimidazole pro-drug which requires nitroreduction to become active, although its mode of action is not fully understood. In the present work we used a non-targeted MS-based metabolomics approach to study the metabolic response of T. cruzi to Bzn.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methodology/Principal findings&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Parasites treated with Bzn were minimally altered compared to untreated trypanosomes, although the redox active thiols trypanothione, homotrypanothione and cysteine were significantly diminished in abundance post-treatment. In addition, multiple Bzn-derived metabolites were detected after treatment. These metabolites included reduction products, fragments and covalent adducts of reduced Bzn linked to each of the major low molecular weight thiols: trypanothione, glutathione, γ-glutamylcysteine, glutathionylspermidine, cysteine and ovothiol A. Bzn products known to be generated in vitro by the unusual trypanosomal nitroreductase, TcNTRI, were found within the parasites, but low molecular weight adducts of glyoxal, a proposed toxic end-product of NTRI Bzn metabolism, were not detected.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions/significance&lt;/b&gt;&lt;p&gt;&lt;/p&gt; Our data is indicative of a major role of the thiol binding capacity of Bzn reduction products in the mechanism of Bzn toxicity against T. cruzi

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Pituitary Society Delphi Survey: An international perspective on endocrine management of patients undergoing transsphenoidal surgery for pituitary adenomas.

    Get PDF
    PURPOSE: In adults and children, transsphenoidal surgery (TSS) represents the cornerstone of management for most large or functioning sellar lesions with the exception of prolactinomas. Endocrine evaluation and management are an essential part of perioperative care. However, the details of endocrine assessment and care are not universally agreed upon. METHODS: To build consensus on the endocrine evaluation and management of adults undergoing TSS, a Delphi process was used. Thirty-five statements were developed by the Pituitary Society's Education Committee. Fifty-five pituitary endocrinologists, all members of the Pituitary Society, were invited to participate in two Delphi rounds and rate their extent of agreement with statements pertaining to perioperative endocrine evaluation and management, using a Likert-type scale. Anonymized data on the proportion of panelists' agreeing with each item were summarized. A list of items that achieved consensus, based on predefined criteria, was tabulated. RESULTS: Strong consensus (≥ 80% of panelists rating their agreement as 6-7 on a scale from 1 to 7) was achieved for 68.6% (24/35) items. If less strict agreement criteria were applied (ratings 5-7 on the Likert-type scale), consensus was achieved for 88% (31/35) items. CONCLUSIONS: We achieved consensus on a large majority of items pertaining to perioperative endocrine evaluation and management using a Delphi process. This provides an international real-world clinical perspective from an expert group and facilitates a framework for future guideline development. Some of the items for which consensus was not reached, including the assessment of immediate postoperative remission in acromegaly or Cushing's disease, represent areas where further research is needed

    PKA regulatory subunits mediate synergy among conserved G-protein-coupled receptor cascades

    Get PDF
    G-protein-coupled receptors sense extracellular chemical or physical stimuli and transmit these signals to distinct trimeric G-proteins. Activated Gα-proteins route signals to interconnected effector cascades, thus regulating thresholds, amplitudes and durations of signalling. Gαs- or Gαi-coupled receptor cascades are mechanistically conserved and mediate many sensory processes, including synaptic transmission, cell proliferation and chemotaxis. Here we show that a central, conserved component of Gαs-coupled receptor cascades, the regulatory subunit type-II (RII) of protein kinase A undergoes adenosine 3′-5′-cyclic monophosphate (cAMP)-dependent binding to Gαi. Stimulation of a mammalian Gαi-coupled receptor and concomitant cAMP-RII binding to Gαi, augments the sensitivity, amplitude and duration of Gαi:βγ activity and downstream mitogen-activated protein kinase signalling, independent of protein kinase A kinase activity. The mechanism is conserved in budding yeast, causing nutrient-dependent modulation of a pheromone response. These findings suggest a direct mechanism by which coincident activation of Gαs-coupled receptors controls the precision of adaptive responses of activated Gαi-coupled receptor cascades
    corecore