278 research outputs found

    A two-dimensional, two-electron model atom in a laser pulse: exact treatment, single active electron-analysis, time-dependent density functional theory, classical calculations, and non-sequential ionization

    Get PDF
    Owing to its numerical simplicity, a two-dimensional two-electron model atom, with each electron moving in one direction, is an ideal system to study non-perturbatively a fully correlated atom exposed to a laser field. Frequently made assumptions, such as the ``single active electron''- approach and calculational approximations, e.g. time dependent density functional theory or (semi-) classical techniques, can be tested. In this paper we examine the multiphoton short pulse-regime. We observe ``non-sequential'' ionization, i.e.\ double ionization at lower field strengths as expected from a sequential, single active electron-point of view. Since we find non-sequential ionization also in purely classical simulations, we are able to clarify the mechanism behind this effect in terms of single particle trajectories. PACS Number(s): 32.80.RmComment: 10 pages, 16 figures (gzipped postscript), see also http://www.physik.tu-darmstadt.de/tqe

    Lower entropy bounds and particle number fluctuations in a Fermi sea

    Full text link
    We demonstrate, in an elementary manner, that given a partition of the single particle Hilbert space into orthogonal subspaces, a Fermi sea may be factored into pairs of entangled modes, similar to a BCS state. We derive expressions for the entropy and for the particle number fluctuations of a subspace of a fermi sea, at zero and finite temperatures, and relate these by a lower bound on the entropy. As an application we investigate analytically and numerically these quantities for electrons in the lowest Landau level of a quantum Hall sample.Comment: shorter version, typos fixe

    Energy levels and lifetimes of Gd IV and enhancement of the electron dipole moment

    Full text link
    We have calculated energy levels and lifetimes of 4f7 and 4f6 5d configurations of Gd IV using Hartree-Fock and configuration interaction methods. This allows us to reduce significantly the uncertainty of the theoretical determination of the electron electric dipole moment (EDM) enhancement factor in this ion and, correspondingly, in gadolinium-containing garnets for which such measurements were recently proposed. Our new value for the EDM enhancement factor of Gd+3 is -2.2 +- 0.5. Calculations of energy levels and lifetimes for Eu~III are used to control the accuracy.Comment: Submitted to Phys. Rev. A 6 pages, 0 figures, 3 table

    Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements

    Get PDF
    The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project

    Dielectronic Recombination of Argon-Like Ions

    Full text link
    We present a theoretical investigation of dielectronic recombination (DR) of Ar-like ions that sheds new light on the behavior of the rate coefficient at low-temperatures where these ions form in photoionized plasmas. We provide results for the total and partial Maxwellian-averaged DR rate coefficients from the initial ground level of K II -- Zn XIII ions. It is expected that these new results will advance the accuracy of the ionization balance for Ar-like M-shell ions and pave the way towards a detailed modeling of astrophysically relevant X-ray absorption features. We utilize the AUTOSTRUCTURE computer code to obtain the accurate core-excitation thresholds in target ions and carry out multiconfiguration Breit-Pauli (MCBP) calculations of the DR cross section in the independent-processes, isolated-resonance, distorted-wave (IPIRDW) approximation. Our results mediate the complete absence of direct DR calculations for certain Ar-like ions and question the reliability of the existing empirical rate formulas, often inferred from renormalized data within this isoelectronic sequence

    Dielectronic recombination data for dynamic finite-density plasmas I. Goals and methodology

    Get PDF
    A programme is outlined for the assembly of a comprehensive dielectronic recombination database within the generalized collisional--radiative (GCR) framework. It is valid for modelling ions of elements in dynamic finite-density plasmas such as occur in transient astrophysical plasmas such as solar flares and in the divertors and high transport regions of magnetic fusion devices. The resolution and precision of the data are tuned to spectral analysis and so are sufficient for prediction of the dielectronic recombination contributions to individual spectral line emissivities. The fundamental data are structured according to the format prescriptions of the Atomic Data and Analysis Structure (ADAS) and the production of relevant GCR derived data for application is described and implemented following ADAS. The requirements on the dielectronic recombination database are reviewed and the new data are placed in context and evaluated with respect to older and more approximate treatments. Illustrative results validate the new high-resolution zero-density dielectronic recombination data in comparison with measurements made in heavy-ion storage rings utilizing an electron cooler. We also exemplify the role of the dielectronic data on GCR coefficient behaviour for some representative light and medium weight elements.Comment: 14 Pages, 9 Figures. Submitted to Astronomy & Astrophysics April 12, 200

    Convergent calculations of positron scattering from molecular hydrogen

    Get PDF
    An overview is given of the recently developed adiabatic-nuclei convergent closecoupling method for positron-molecule scattering. Fixed-nuclei single-centre calculations of positron-H2 scattering are presented. Particular emphasis is given to demonstrating convergence with increasing size of the basis and the projectile partial-wave expansion. Results are converged to within ±5%

    Threshold detachment of negative ions by electron impact

    Full text link
    The description of threshold fragmentation under long range repulsive forces is presented. The dominant energy dependence near threshold is isolated by decomposing the cross section into a product of a back ground part and a barrier penetration probability resulting from the repulsive Coulomb interaction. This tunneling probability contains the dominant energy variation and it can be calculated analytically based on the same principles as Wannier's description for threshold ionization under attractive forces. Good agreement is found with the available experimental cross sections on detachment by electron impact from D−D^{-}, O−O^{-} and B−B^{-}.Comment: 4 pages, 4 figures (EPS), to appear in Phys.Rev.Lett, Feb. 22nd, 199

    A large-scale R-matrix calculation for electron-impact excitation of the Ne2+^{2+} O-like ion

    Full text link
    The five JΠ\Pi levels within a np2np^2 or np4np^4 ground state complex provide an excellent testing ground for the comparison of theoretical line ratios with astrophysically observed values, in addition to providing valuable electron temperature and density diagnostics. The low temperature nature of the line ratios ensure that the theoretically derived values are sensitive to the underlying atomic structure and electron-impact excitation rates. Previous R-matrix calculations for the Ne2+^{2+} O-like ion exhibit large spurious structure in the cross sections at higher electron energies, which may affect Maxwellian averaged rates even at low temperatures. Furthermore, there is an absence of comprehensive excitation data between the excited states that may provide newer diagnostics to compliment the more established lines discussed in this paper. To resolve these issues, we present both a small scale 56-level Breit-Pauli (BP) calculation and a large-scale 554 levels R-matrix Intermediate Coupling Frame Transformation (ICFT) calculation that extends the scope and validity of earlier JAJOM calculations both in terms of the atomic structure and scattering cross sections. Our results provide a comprehensive electron-impact excitation data set for all transitions to higher nn shells. The fundamental atomic data for this O-like ion is subsequently used within a collisional radiative framework to provide the line ratios across a range of electron temperatures and densities of interest in astrophysical observations.Comment: 17 pages, 8 figure
    • 

    corecore