79 research outputs found

    A short static-pressure probe design for supersonic flow

    Get PDF
    A static-pressure probe design concept was developed which has the static holes located close to the probe tip and is relatively insensitive to probe angle of attack and circumferential static hole location. Probes were constructed with 10 and 20 deg half-angle cone tips followed by a tangent conic curve section and a tangent cone section of 2, 3, or 3.5 deg, and were tested at Mach numbers of 2.5 and 4.0 and angles of attack up to 12 deg. Experimental results indicate that for stream Mach numbers of 2.5 and 4.0 and probe angle of attack within + or - 10 deg, values of stream static pressure can be determined from probe calibration to within about + or - 4 percent. If the probe is aligned within about 7 deg of the flow experimental results indicated, the stream static pressures can be determined to within 2 percent from probe calibration

    Experimental and analytical study of an inlet forebody for an airframe-integrated scramjet concept

    Get PDF
    Preliminary analytical and experimental inlet forebody investigations have been conducted at Mach numbers of 6.0 and 8.5. The forebody design concept consisted of a sharp-nosed right circular cone followed by elliptical cross sections. This concept resulted in swept isentropic compression which would allow swept cowl leading edges. Measurements were made to define the condition of the inviscid flow field developed by the forebody, including flow profiles in the vicinity of cowl leading-edge stations, and the three-dimensional boundary-layer effects. The investigation verified some of the expected differences between the predicted and the experimental results

    Subscale, hydrogen-burning, airframe-integrated-scramjet: Experimental and theoretical evaluation of a water cooled strut airframe-integrated-scramjet: Experimental leading edge

    Get PDF
    A water-cooled leading-edge design for an engine/airframe integrated scramjet model strut leading edge was evaluated. The cooling design employs a copper cooling tube brazed just downstream of the leading edge of a wedge-shaped strut which is constructed of oxygen-free copper. The survival of the strut leading edge during a series of tests at stagnation point heating rates confirms the practicality of the cooling design. A finite difference thermal model of the strut was also proven valid by the reasonable agreement of calculated and measured values of surface temperature and cooling-water heat transfer

    Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet

    Get PDF
    An aerodynamic model of a hydrogen burning, airframe integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft.) but with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen free, high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for pressure, surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along the various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations

    Applying Superfluid Helium to Light Dark Matter Searches: Demonstration of the HeRALD Detector Concept

    Full text link
    The SPICE/HeRALD collaboration is performing R&D to enable studies of sub-GeV dark matter models using a variety of target materials. Here we report our recent progress on instrumenting a superfluid 4^4He target mass with a transition-edge sensor based calorimeter to detect both atomic signals (e.g. scintillation) and 4^4He quasiparticle (phonon and roton) excitations. The sensitivity of HeRALD to the critical "quantum evaporation" signal from 4^4He quasiparticles requires us to block the superfluid film flow to the calorimeter. We have developed a heat-free film-blocking method employing an unoxidized Cs film, which we implemented in a prototype "HeRALD v0.1" detector of \sim10~g target mass. This article reports initial studies of the atomic and quasiparticle signal channels. A key result of this work is the measurement of the quantum evaporation channel's gain of 0.15±0.0120.15 \pm 0.012, which will enable 4^4He-based dark matter experiments in the near term. With this gain the HeRALD detector reported here has an energy threshold of 145~eV at 5 sigma, which would be sensitive to dark matter masses down to 220~MeV/c2^2.Comment: 14 pages, 9 figure

    First demonstration of 30 eVee ionization energy resolution with Ricochet germanium cryogenic bolometers

    Full text link
    The future Ricochet experiment aims to search for new physics in the electroweak sector by measuring the Coherent Elastic Neutrino-Nucleus Scattering process from reactor antineutrinos with high precision down to the sub-100 eV nuclear recoil energy range. While the Ricochet collaboration is currently building the experimental setup at the reactor site, it is also finalizing the cryogenic detector arrays that will be integrated into the cryostat at the Institut Laue Langevin in early 2024. In this paper, we report on recent progress from the Ge cryogenic detector technology, called the CryoCube. More specifically, we present the first demonstration of a 30~eVee (electron equivalent) baseline ionization resolution (RMS) achieved with an early design of the detector assembly and its dedicated High Electron Mobility Transistor (HEMT) based front-end electronics. This represents an order of magnitude improvement over the best ionization resolutions obtained on similar heat-and-ionization germanium cryogenic detectors from the EDELWEISS and SuperCDMS dark matter experiments, and a factor of three improvement compared to the first fully-cryogenic HEMT-based preamplifier coupled to a CDMS-II germanium detector. Additionally, we discuss the implications of these results in the context of the future Ricochet experiment and its expected background mitigation performance.Comment: 10 pages, 5 figures, 1 tabl

    Coherent elastic neutrino-nucleus scattering: Terrestrial and astrophysical applications

    Get PDF
    Coherent elastic neutrino-nucleus scattering (CEν\nuNS) is a process in which neutrinos scatter on a nucleus which acts as a single particle. Though the total cross section is large by neutrino standards, CEν\nuNS has long proven difficult to detect, since the deposited energy into the nucleus is \sim keV. In 2017, the COHERENT collaboration announced the detection of CEν\nuNS using a stopped-pion source with CsI detectors, followed up the detection of CEν\nuNS using an Ar target. The detection of CEν\nuNS has spawned a flurry of activities in high-energy physics, inspiring new constraints on beyond the Standard Model (BSM) physics, and new experimental methods. The CEν\nuNS process has important implications for not only high-energy physics, but also astrophysics, nuclear physics, and beyond. This whitepaper discusses the scientific importance of CEν\nuNS, highlighting how present experiments such as COHERENT are informing theory, and also how future experiments will provide a wealth of information across the aforementioned fields of physics

    An Improved Static Probe Design

    No full text
    corecore