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Abstract

A water-cooled leading-:dge design for an engine/airframe integrated
scramjet model strut leading edge has been evaluated experimentally and
theoretically, The cooling design employs a copper cooling tube brazed
just downstream of the leading edge of a wedge~shaped strut which is
constructed of oxygen free copper. The survival of the strut leading
edge during a series of tests at stagnation point heating rates ranging
from 8.4 to 17.3'MI~'/m2 confirms the practicality of the ceooling design,
and infers that no problem existed either with the low conductivity of
the braze material or with voids incurred dur'ng the brazing process,
In addition, a finite difference thermal model of the strut was proven
valia by the reasonable agreement of calculated and measured values of
surface temperature and cooling-water heat transfer.
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SUBSCALE, HYDROGEN-BURNING. AIRFRAME-INTEGRATED-SCRAMJET:
EXPERIMENTA]. AND THEORETICAL EVALUATION OF A WATER COOLED
STRUT LEADING EDGE

5. 2. Pinckney, R. W. Guy, H. L. Beach, and R. C. Rogers

Langley Research Center
SUMMARY

A water—cooled leading-edge for an enginefairframe integrated scramjet
model strut leading edge h-s been evaluated experimentally and theoretically.
The covling design emplovs a copper cooling tube brazed just downstream of the
leading edge of a wedge shaped strut which is constructed of oxygen free copper.
The survival eof the strut leading edge during a series of tests at stagnation
point heating rates ranging from 8.4 to 17.3 MW/mZ coafirms the practicality
of the cooling design and infers that no problem existed either with the low
conductivity of the braze material or with voids incurred during the brazing
process. In addition, a finite difference thermal model of the strut was
proven valid by the reasonable agreement of calculated and measured values of
surface temperature and cooling-water heat transfer,

INTRODUCTION

Since the beginning of the Hypersonic Ramjet Engine Project (1964), interest
in the design and testing of various scramjet engine ideas and models has grown
considerably. (See refs. 1-4,) The possibility of high heating rates on engine
model sidewall and fuel injector strut lead‘ung edges presents the problem
rf determining if leading edges should be cooled, and how simple the cooling
design can be. These problems become particularly evident in relation to a
model of the Langley scramjet module (see ref. 5), which is to be tested in a
Mach numbrr 7.0 simulated flight enthalpy environment at a flight dynamic
pressvre of 400 psf. The purpose of this report is to present a theoretical and
experimental evaluation of a water-cooled leading-edge strut model designed for
use in a high enthalpy supersonic flow. The model is designed to be represent-
ative of those to be used in the M = 7.0 engine test.

A varlety of techniques exist for constructing engine model strut or side-
wall leading edges and their cooling passages; these techniques include drilled
cooling passages or the use of a combination of electron beam welding and machin-
ing to construct cooling passages. The present investigation considers the
brazing of a cooling tube immediately downstream of the leading edge. Two
possible problems become evident with this construction technique. These pro-
blems are: (1) the low thermal conductivity of the braze material decreases

T TR A T ,,,1

s sl




cooling effectiveness, and (2) any vold regivons between the tube, braze material,
and cugine strut or sidewall create hot spot:.

The leading-vdze cocling model used in the present investigation is a 16.66

: degree included angle wedge strut with a 0.76 mm diameter leading edge, which
| has a 3.2 mm diameter cooling tube brazed within the wedge at 11.7 leading-edge .
diame¢rs downstream of the strut leading edge. The model was tested in the : ,
vitiated heater facility (see ref. 6} in the overexpanded flow of a M = 2.7 5 ;
; nozzle at conditions ranging from 10009 K to 1723° K in stagnation temperature, '
i and from 1.344 MN/m¢ to 2.172 MN/m2 in stagnation pressure. For each test
: condition, transient measurements of strut temperature and cooling-water heat-
) transfer rate are compared with theoretical valuer predicted using the two-

dimensional transient heat-transfer computer program of reference 7.

SYMBOLS
Cf friction coefficient in a pipe
Cp specific heat at constant pressure : %
D inside diameter of strut cooling tube
. h enthalpy . . . Lo B
H heat-traasfer coefficient 3
p pressure j
Pr Prandtl number
: q heat-transfer rate per unit area ‘
g T temperature
Tév average temperature defined by eq. (4)
aw surface recovery temperature
Tw wall temperatﬁre at beginning of run
TB,En bulk temperature of cooling water entering the strut N R i
{ | : TB,Ex bulk temperatuere of cooling water leaving the strut g ?
U velocity ; ;
l ; X - distance é;;ﬁg surface of strut in direction of flow b i '?
, ; % surface angle of the strut relative to flow diredtion_ ﬁ -3
; 2 :
: ORIGINAL PAGE IS
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t viscousity
1] density

Subscripts:

HZO cooling water parameters
stag stagnation point conditions
t,o total

w wall conditions

APPARATUS AND PROCEDURE

Model

The 16.66 degree included angle wedge strut shown in figure 1 is construct-
ed of oxygen free copper. The strut has a 3.2 mm diameter copper cooling tube
{cooling water passage is 1.5 mm in diameter) brazed 8.9 +m behind the 0.76 mm
diameter leading edge. The cooling water enters the rear of the struc through
a 2.3 mm ingide diameter tube, passes from the rear of thz strut through a
drilled hole to the leading-edge cooling tube, and flows through the leading-
edge cooling tube to another drilled hole which meets a 2.3 mm inside diameter
exit tube. \Upstream cooling water pressure was varied from 0.8278 MN/m? to
3.499 MN/m?, while downstream cooling water back pressure wus varied from 0.4826
MN/mZ to 1.55 MN/mZ. Model temperature was measured with a chromel-alumel
thermocouple. located on the centerline of the wedge 13 mm behind the leading
edge and in the spanwise center of the strut. The portion of the inlet and
exit cooling water leads and the peortion of the chromel-alumel thermocouple
lead wire that pass along the back side of the strut, were covered with filler
material for thermal protection.

Facility

Experimental tests of the strut model were conducted in the vitiated heater
facility described in reference 6. The hot gas of the facility is produced by
a hydrogen combustion heater. Hydrogen, oxygen, and air are supplied in such
proportions that the resulting vitiated air contains oxygen in a volume fraction
equal to that of real air. For these experiments, the operating conditions were
from 1.344 MN/m? to 2.172 MN/m2 in stagnation pressure and 1000° K teo 1723° K
in stagnation temperature. The hot gas passes from the combustion heater through
a M= 2.7 contoured, two-dimensional nozzle to the atmosphere as a free-jet. A
schematic of the M = 2.7 nozzle and the strut is presented in figure 2. The
nozzle flow is fully expanded at a heater total pressure of 2.758 MN/m2; there-
fore, the nozzle flow is overexpanded for all the present tests and a shock
configuration similar to that of figure 2, existed in the nozzle exit flow for
all test runs.
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Test Procedure

The test procedure consisted of establishing hot flow through the nozzle, b
inserlisy tiw atrut wodel In the hot flow for 5 to 15 seconds, rewoving the ;
model. and terminatine the {low. Experimental data taken consisted of measure-
ments of strut couling water flow rate using a turbine meter, upstream and
downstream strunt cooling-water temperatures using copper constantan thermocouples,
cooling-water pressures upstream and downstream of the strut, strut temperature,
and 16 mm movies of ewch test to record a failure if it occurred. Hydrogen and
air mass flow rates furnished to the vitiated heater were aiso measure. Using
thes-. measurements, the heater fuel-air ratio was calculated and the hot gas
stagnation tewperatures and other properties were computed using the method of
appendix A.

THEQRETICAL METHOD

‘The prediction of the thermal response of materials to a specified environ-
ment requires the solution of the governing heat-transfer equations subject to
the imposed boundary conditions. The theoretical method and the corresponding
computer program used in the present investigation for the solution of the
governing transient heat-transisr equations, are given in reference 7. The
program cen be used for the solution of temperature-time histories for one-
dimensional, two~dimensional, and spherical systems. The basic procedure
requires that the specific body configuration be divided into a system of small
volumes {blocks} and that the size, orientation, material composition, and
modes of heat transfer for each individual block and the interrelationships
between the blocks be specified. With these inputs the computer program, using
an implicit finite difference heat balance method (see ref. 8), solves for the
temperatures of the blocks as a function of time. The thermal-balance equations
for the individual blocks, the convective heat-transfer options, and the finite-
difference algorithm for the solution of the governing equations are also given
in reference 7.

‘The transient hear-transfer computer program requires as input, the local
recovery temperature and heat-transfer coetficients (film coefficients) fo-
both the wedue surface and cooling passage walls. The local flow conditions
were generated bv combining results for the nozzle exit conditlons from the :
combustor desizn computer program of appendix A, with results for flow condi- .
tions behind the shocks from the perfect gas oblique shock tables of reference
9.

A computer prooram for the stagnation line heat transfer (similar to the
method of ref. 10) was used to generate the heat-transfer coefficients at the
stagnation line of the strut. Using the stagnation line heat-transfer predic-
tions and an approximate sine relationship,

oA _(_d --
H = T (T _— ) S5in o (1)
w aw stag
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the heat-transfer coeificients around thé circular part of the strut leading
edge were generated. The integral boundary layer computer program of reference
11 was used to generate heat transfer coefficients along the surface of the
strut.

The heat-transfer coefficients for the internal surface of the strut
leading-edge cooling-water passage were computed using the following standard

heat-trans{er relationship,
. puC C
4 p f (2)
T < T 5 p 273 ‘
aw W T H.0

2

where (see ref. 12, pg. 401, for turbulent flow),

- .3164 25 ; (3)

f 4 (puD)
u

In equations {2) and (3) the specific heat "Cp", the Prandtl number "Pr",

HZO

"ot

and the viscosity "u" of the strut cooling water were computed based on the

.average temperature given by,

’ Tw + TB,En * ‘B,Ex
T = (4)
av 3
where "T " is the initial strut temperature, and T and T are the
w B,En B,Ex

bulk temperatures of the strut cooling water entering and leaving the strut.

The element model developed to represent the cross section of the strut
leading edge and cooling-water passage is shown to scale in figure 3(a) with-
out element identification and in figure 3(b), not to scale, but with the
element identification (dimensions in table I), The use of this model to
represent the strut assumes that spanwise heat transfer and temperature gradients
are negligible, and thus thermal relationships in the strut are two dimensiomal.
The high thermal conductivity of the copper allows great latitude in the choice
of block shapes and sizes; therefore, as shown in figure 3, the wedge was
somewhat arbitrarily broken up into 55 separate copper blocks, with convection
heat transfer along the external surface of the wedge (blocks 1 through 10),
convection heat transfer along the internal surface of the coeling-water passage
(blocks 11 through 16), and zero convection heat transfer from the rear of the
strut and across the wedge centerline. The wetted area of the square section
used to represent the cooling-water passage is within 4 percent of that of the
actual circular water passage. ‘
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RESULTS AND DISCUSSION

Experimental Results

Information pertinent to the seven test runs which were conducted with the
strut wmodel, is presented in table TI. Included are vitiated heater condltions,
cooling-witer conditions, local flow conditions behind the nozzle overexpansion
shock, and local conditions behind the model bow shock. Also included are
values for stagnation line heat transfer and a heat-transfer parameter

by - h
HEZ/} HELE*G—;ﬁ vhich is proportional to the wedge surface heat-transfer rate.
Pr (efm) " °°

The vulues of these quantities were computed from the local conditions and are
used 45 aids in evaluating data consistency. Since the water flow passage is
between the model leading edge and the thermocouple, measured strut temperatures
dre expected to be more sensitive to the wedge surface heating parameter than

to the stazpation line heuting rate. Other fiow characteristics which affect
the measured strut temperature are the boundary laver transition location and
the cooling-water tflow rate. The heat transfer to the water should be sensitive
to both the stagnation liue heating and the wedge surface heat transfer.

Plots ot measured strut temperature and heat transfer to the cooling water
for the varivus tests are presented o2s functions of time in figures 4 and 5,
respectivelv. Ocrdinarily, the strut temperature {see fig. 4) should increase
directly with the surface heat-transfer parameter (see tabhle 1I1) and inversely
with the ceocoling-vater flow rate. LExceptions to the trend are found in test
runs 4 and 5, where run 5 conditions vielded higher strut temperatures with a
slightly lower surface heat-transfer parameter and a higher cooling-water flow
rate; and in von b, which has unique characteristics to be discussed later. The
higher strot temperastures obtained in test run 5, relative to test run 4, can
possibly be attributed to the higher Reynolds number (see table 11) which could
promote earlier transition Iin test rum 5 and to the higher stugnation heating
{see table 1) ol test rum 5.

Cowpavrison of the trends of figure 5 and stagnation line heating (qstag)
. An
stag

exception is apparent here also as test run 4 exhibited slightly higher levels

of heat transfer to the water than run 3, while dstag was nearly the same.

However, the surface heating parameter being higher for test rum 4 could account
for the higher heat transfer to the cooling water.

from table Il shows that heat transfer to the water increases with ¢

One elftect of cooling-water conditions is evident from a comparison of test
rung 5 and 6. Table 1l indicates that these tests are vory similar except for
the water tlow rate and water pressure level, Figure 4 shows, however, unique
behavior for test run 6 when the time exceeded approximately six seconds. Strut
temperature rose quite rapidly with a gradient much larger than for any other
run. This was indicative of cooling passage boiling, which caused a rapid in-
crease in downstream water pressure (shown by back pressure measurements) and the
resultaat loss of water flow and cooling effectiveness. Because of the boiling,

6
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heat transfer to ‘he water for test run 6 is not shown on figure 5.

The onset of a failure mode for test run 6 showed that a back pressure of
0.55 MN/m? was insuf{iclent to prevent bolling although this same pressure had been
adequate for test ruuq?. For the most severe condition (test run 7), a back
pressure ot 1.55 MM/m~ was found to be acceptable to prevent boiling with adequate
water flow rate. The survivability of the strut model verifies that the leading-
edge labrication and cooling technlques are sufficient for the conditions tested,
and should be more than adequate for the Mach 7 tests,

Theoretical Results

Calculations of temperature distribution thrcough the strut versus time, and
heat transfer to the cooling water versus time, were made for the test runs dis-
cussed in the previous section. Each set of calculations, except for those of
test runs 4 and 7, consisted of predicting the temperature-time histories and
cooling-water heat-transfer-time histories, assuming heat-transfer coefficients
for all laminar and all turbulent boundary layer flow on the surface of the strut
model. The set of theoretical calculations for test runs 4 and 7 also include an
additional prediction using heat-transfer coefficients corresponding to laminar
boundary layer flow to a point 24,38 mm back of the strut leading edge, followed
by a transitional boundary layer region, and then a turbulent boundary layer region
over the remainder of the strut. Comparisons of theoretical predictions with
experimental data for test runs 4, 7, 5, 1, 2, 3, and 6 are presented in figures
6 through L2, respectively. :

The theoretical heat transfer coefficients for test runs 4 and 7 assuming
all laminar, all turbulent, and the combination laminar, transitional and turbu-
len. boundary layers on the surface of the strut are presented in figures 6(a)
and 7(a). The theoretical and experimental values of the strut temperature versus
time, are presented in figures 6(b) and 7(b), and the theoretical and experimental
values of the strut cooling-water heat transfer versus time, are prescnted in
figures 6(c), 6(d), 7(c), and 7(d}. The two theoretical curves for all turbulent,
all laminar and transitional boundary layers given in the latter figures corre-
spond to the minimum and maximum cooling~water passage lengths in the strut. The
minimum is the length along the leading edge of the strut, and the maximum Includes
the passage length through the strut. Tor cases 4 and 7, the theoretical strut
temperature versus time distribution (see figs., 6(b) and 7(b)) using the transi-
tional boundary layer agrees with the experimental strut temperature distribution
with reasonable accuracy. The slope of the theoretical temperature versus time
curve differs from the experimental data for the first four to five seconds; how-
ever, the predicted curves for both tests begin leveling off at about the same
value and time as the experimental data. The same trend is seen in the comparison
of experimental and theoretical heat transfer to the water in figures 6(d) and
7(d). The choice of block shape and sizr~ 1s believed to be one of the reasons for
the difference between the theoretical and experimental results in the early times :
where the larger gradients occur. !

Calculations corresponding to all-turbulent and all-laminar heat transfer !
on the strut surface predict the upper and lower limits of strut temperature i
and cooling-water heat transfer. It appears from figures 6(b), 6(d}, 7(b}, and i
7(d) that predicting more reasonable values depends on choosing the correct
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travs it iom location,  laplicit fa this statement is the fact that water-side
mode Livie 3y sufficieant v good.  Howewer, the fact that strut temperatare and
cooling-water hwat traacster are coupled would tend to prevent the occurrence
of gond correlations o both these quantities 1f the water-side modeling were
not suttivient. Siree the wetted perimeter of the coolant passage used in the
caleulit fons was within & pe cent of the actual case, and ceasonable veriations
of temperature and cooling-1.:er heat trans{er (reiative to each other) were
found, it iz concluded thit water-side modeling was indeed sufficlent for near
steady state. Therefore, it can be concluded that predicting the correct
equilibrivm lewvels of the strut temperature or cooling-water heat transfer
teduces to the problem of predicting the correct transition point. In the
preseat fnvestigoation. the assumption for the location of boundary layer tran-
sition was checled using the correlation for the transition point recommended
in reference t3 for shatp flet plates. This comparison revealed that the as-
sumpt ion of 24.38 mm in the presant case lunded well within the spread of the
experimental data used to cobtain the transition point correlation.

Experimentas) ane rheoretical results for test rums 5, 1, 2, and 3 are
presented in fipures ¥ through 11, The experimental strut temperatures and
cooling-water heat truusters are shown to lie between the two limiting theo-
retical caleulations tor all test runs. Since these cases presented no unique
problemsg in analysis bevond those of cases 4 and 7, the transitional calculations
were not peviormed for them.

The experimeuial amd theoretical results of test run 6 are presented in
figure 12. &s pointed out previously the much larger slope, relative to other
test cases, of the experimental strut temperature versus time curve beyond the
six second point, is due to cooling water boiling in the strut cooling-water
passave, and thereiore a3 reduction in cooling-water passage heat-transfer
coefticient., Under thes¢ conditions no reliable experimental cooling water

heat transfers were obtained for test run 6, and therefore no theovetical values
are presentted.

The compavisons of experimental and theoretical results (which neglected
the braze waterial) infer that the low conductivity of the bLraze material has
very little effect on cooling effectiveness. This amplifies the earlier con-
clusion that the braze technique is a viable construction method for strut or
engine model sidewall leading edges. As pointed out previously, the upper limit
of strut temperature aud strut cooling-water heat transfer versus time is pre-
dicted using the assumption of all turbulent heat transfer on the strut surface.
Therefore, theoretical predictions corresponding to all turublent heat transfer
on the strut surface could be used in the conservative desipgn of future con-
figurations. it 2lso appears that judicious selection of the transition location
would make design calculations with transition a possibility.

CONCLUDING REMARKS

A water-cooled leading-edge design for a scramjet model strut has been
evaluited experimentally and theoretically. The cooling design employs a copper
tube brazed just downstream of the leading edge of a wedge shaped strut which
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i
is constructed of oxygen free copper. The evperimental and theoretical results , j
infer that the low conductivity of the braze oaterial and any void regions ! j
: betw.-en the strut cooling tube and the strut iteelt evidentlv have very little
% effect on experimensa' results and thus the braze technlque is a possible strut ?
f% leadlng edype coustruction mefhod, Care must be taken, however, to insure not j
;j . boiling. An inexpensive transient computational method for thermal analysis in %
| evaluating the cooling necessity of engine model strut and sidewall leading ’
-; edges was used.,  Predictions of strut temperature and cooling-water heat transfer {
P versus time, are compared with experimertal (.ita obtained by testing the strut |
i model in o vitiated heater facllitv, TFavorable comparison of experimental :
| results and theoretical predictlons 1s a problem of choosing the correct boundary
layer transition location. The theoretical upper and lower limits for strut
ﬁ temp.oture and cooling-water heat transfer versus time were calculated assuming
' all laminar and all turbulent boundary layer, respectively, on the strut; these
i values bracket the experimental data. The favorable comparison obtained between
; / experimental and th:oretical results demonstrates the successful development
d of a thermal model for the strut heating and cooling characteristics.

|
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APPENDTX A

A One=Ulnensions]l Couputer Program for Supersonic Combustor Design

& computer progtaw for calculating the static pressure ood other flow
paraweter distributions in a one-dimensional supersonic combustor channel has
been developad at NASA Langley. Real gas thermodynamic properties for mixtures
of hvdrogen and air veavted to a specified degree are used for the calculations.
Input to the program inclades the entering fuel and air states, the chanuel
peonct vy, ond the distribution of fuel Injection and fuel reaction with distance
along the cianiet.  fwtput consists of the state at each point calculated along
the chaunel, and liae printer plots of selected parameter variations with
distance., This computer program is available from Computer Software Management
and Intformation Center, The University of Ceorgia, Athens, Georgia 30601; under
computer program romber LAR-11041.
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TABLE L. - DIMENS1ONS OF THERMAL MODEL FOR FIGURE 3
b e LENGTH LINE LENGTH
| mm mm

A 0.0399 p 7.64
B 0.251 Q 7.63
C n 251 R 7.60
o 3.83 s 7.37
E 3.83 T 0.0762
F 1.10 U 0.152
G 0.672 v 0.152
H 1.39 W 0.561
I 10.96 X 0.561
J 7.94 Y 0.177
K 7.93 z 0.0985
L 7.91 Al 0.023
M 7.89 B' 0.161
N 7.81 c' 7.29
0 7.73
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