8 research outputs found

    Improvements in dizziness and imbalance results from using a multi disciplinary and multi sensory approach to Vestibular Physical Therapy - A case study

    No full text
    This paper discusses a case study of a 41 year old active duty male service member who sustained a motorcycle accident and head trauma and underwent multidisciplinary vestibular physical therapy for treatment. He was initially treated with traditional physical therapy applications of treadmill walking and standing balance with some symptom improvements, but was not able to maintain a running speed that would allow him to remain on active duty status. Further treatment utilizing a Computer Assisted Rehabilitation Environment (CAREN) was performed in order to increase difficulty levels and recover more functionality. This treatment is able to elicit vestibular deficits seen in the community as it requires subjects to walk and balance while performing tasks within a virtual scenario with platform motion, visual surround and flow, and cognitive processing. After six weeks of therapy, twice weekly, improvements in clinical vestibular measures were observed as well as walking speed and patient confidence. The subject was able to return to full duty after treatment. This case study provides supportive evidence that multidimensional tasking in a virtual environment provides a safe but demanding form of vestibular therapy for patients needing more challenging tasks than those provided with traditional therapy techniques. Those persons requiring higher levels of performance before returning to work (e.g. pilots, special operators, etc.) may find this type of therapy beneficial

    Learning and Long-Term Retention of a Complex Sensorimotor Task Within an Immersive Virtual Reality Environment in a Non-Injured Population

    No full text
    Task-specific training in immersive virtual reality environments (IVREs) can provide practice for skills that are transferred to real-world settings. The present study examined skill acquisition and retention of a non-injured population performing a complex, sensorimotor navigation task in the Computer Assisted Rehabilitation Environment (CAREN). Seventeen subjects participated twice weekly for 6 weeks, with follow-up visits at 3-month intervals for 1 year. Subjects performed a navigation task, where they drove a virtual boat through a scene using weight shifting and body movement. Subjects improved over time on all outcome measures. A significant effect was observed for visit number on total score, time to complete the task, number of buoys navigated successfully, and number of penalties incurred. Task-specific training in IVREs may be effective for operational skills training and rehabilitation of injured populations by employing tasks that lead to long-term retention

    Muscle Engagement Monitoring Using Self-Adhesive Elastic Nanocomposite Fabrics.

    No full text
    Insight into, and measurements of, muscle contraction during movement may help improve the assessment of muscle function, quantification of athletic performance, and understanding of muscle behavior, prior to and during rehabilitation following neuromusculoskeletal injury. A self-adhesive, elastic fabric, nanocomposite, skin-strain sensor was developed and validated for human movement monitoring. We hypothesized that skin-strain measurements from these wearables would reveal different degrees of muscle engagement during functional movements. To test this hypothesis, the strain sensing properties of the elastic fabric sensors, especially their linearity, stability, repeatability, and sensitivity, were first verified using load frame tests. Human subject tests conducted in parallel with optical motion capture confirmed that they can reliably measure tensile and compressive skin-strains across the calf and tibialis anterior. Then, a pilot study was conducted to assess the correlation of skin-strain measurements with surface electromyography (sEMG) signals. Subjects did biceps curls with different weights, and the responses of the elastic fabric sensors worn over the biceps brachii and flexor carpi radialis (i.e., forearm) were well-correlated with sEMG muscle engagement measures. These nanocomposite fabric sensors were validated for monitoring muscle engagement during functional activities and did not suffer from the motion artifacts typically observed when using sEMGs in free-living community settings

    Effects of foot intensive rehabilitation (FIRE) on clinical outcomes for patients with chronic ankle instability: a randomized controlled trial protocol

    No full text
    Abstract Background Lateral ankle sprains account for a large proportion of musculoskeletal injuries among civilians and military service members, with up to 40% of patients developing chronic ankle instability (CAI). Although foot function is compromised in patients with CAI, these impairments are not routinely addressed by current standard of care (SOC) rehabilitation protocols, potentially limiting their effectiveness. The purpose of this randomized controlled trial is to determine if a Foot Intensive REhabilitation (FIRE) protocol is more effective compared to SOC rehabilitation for patients with CAI. Methods This study will use a three-site, single-blind, randomized controlled trial design with data collected over four data collection points (baseline and post-intervention with 6-, 12-, and 24-month follow-ups) to assess variables related to recurrent injury, sensorimotor function, and self-reported function. A total of 150 CAI patients (50 per site) will be randomly assigned to one of two rehabilitation groups (FIRE or SOC). Rehabilitation will consist of a 6-week intervention composed of supervised and home exercises. Patients assigned to SOC will complete exercises focused on ankle strengthening, balance training, and range of motion, while patients assigned to FIRE will complete a modified SOC program along with additional exercises focused on intrinsic foot muscle activation, dynamic foot stability, and plantar cutaneous stimulation. Discussion The overall goal of this trial is to compare the effectiveness of a FIRE program versus a SOC program on near- and long-term functional outcomes in patients with CAI. We hypothesize the FIRE program will reduce the occurrence of future ankle sprains and ankle giving way episodes while creating clinically relevant improvements in sensorimotor function and self-reported disability beyond the SOC program alone. This study will also provide longitudinal outcome findings for both FIRE and SOC for up to two years. Enhancing the current SOC for CAI will improve the ability of rehabilitation to reduce subsequent ankle injuries, diminish CAI-related impairments, and improve patient-oriented measures of health, which are critical for the immediate and long-term health of civilians and service members with this condition. Trial Registration Clinicaltrials.gov Registry: NCT #NCT04493645 (7/29/20)
    corecore