3,343 research outputs found

    Clean relaying aided cognitive radio under the coexistence constraint

    Full text link
    We consider the interference-mitigation based cognitive radio where the primary and secondary users can coexist at the same time and frequency bands, under the constraint that the rate of the primary user (PU) must remain the same with a single-user decoder. To meet such a coexistence constraint, the relaying from the secondary user (SU) can help the PU's transmission under the interference from the SU. However, the relayed signal in the known dirty paper coding (DPC) based scheme is interfered by the SU's signal, and is not "clean". In this paper, under the half-duplex constraints, we propose two new transmission schemes aided by the clean relaying from the SU's transmitter and receiver without interference from the SU. We name them as the clean transmitter relaying (CT) and clean transmitter-receiver relaying (CTR) aided cognitive radio, respectively. The rate and multiplexing gain performances of CT and CTR in fading channels with various availabilities of the channel state information at the transmitters (CSIT) are studied. Our CT generalizes the celebrated DPC based scheme proposed previously. With full CSIT, the multiplexing gain of the CTR is proved to be better (or no less) than that of the previous DPC based schemes. This is because the silent period for decoding the PU's messages for the DPC may not be necessary in the CTR. With only the statistics of CSIT, we further prove that the CTR outperforms the rate performance of the previous scheme in fast Rayleigh fading channels. The numerical examples also show that in a large class of channels, the proposed CT and CTR provide significant rate gains over the previous scheme with small complexity penalties.Comment: 30 page

    Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b

    Get PDF
    We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5 microns using the NICMOS instrument on the Hubble Space Telescope. The emergent spectrum contains significant modulation, which we attribute to the presence of molecular bands seen in absorption. We find that water (H2O), carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations, and we are able to estimate the mixing ratios for these molecules. We also find temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the dayside near-infrared photosphere and set an upper limit to the dayside abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter

    Nonlinear bulging factor based on R-curve data

    Get PDF
    In this paper, a nonlinear bulging factor is derived using a strain energy approach combined with dimensional analysis. The functional form of the bulging factor contains an empirical constant that is determined using R-curve data from unstiffened flat and curved panel tests. The determination of this empirical constant is based on the assumption that the R-curve is the same for both flat and curved panels

    Switching-based Sinusoidal Disturbance Rejection for Uncertain Stable Linear Systems

    Get PDF
    The problem of rejection of sinusoidal disturbances with known frequencies acting on an unknown singleinput single-output linear system is addressed in this note. We present a new approach that does not require knowledge of the frequency response of the transfer function over the frequency of interest. The proposed methodology reposes upon the combination of the classic feedforward control algorithm and logic-based switching. The use of three different switching logics is proposed in this paper, namely: pre-routed, dwell-time and hysteresis switching. A comparative evaluation of the three switching strategies is performed via a simulation study

    Civil structure condition assessment by FE model updating: Methodology and case studies

    Get PDF
    Author's manuscript version. the version of record is available from the publisher via: doi:10.1016/S0168-874X(00)00071-8. Copyright © 2001 Elsevier Science B.V.Development of methodology for accurate and reliable condition assessment of civil structures has become increasingly important. In particular, the finite element (FE) model updating method has been successfully used for condition assessment of bridges. However, the success of applications of the method depends on the analytical conceptualization of complex bridge structures, a well-designed and controlled modal test and an integration of analytical and experimental arts. This paper describes the sensitivity-analysis-based FE model updating method and its application to structure condition assessment with particular reference to bridges, including specific considerations for FE modeling for updating and the model updating procedure for successful condition assessment. Finally, the accuracy analysis of damage assessment by model updating was investigated through a case study. © 2001 Elsevier Science B.V. All rights reserved

    A note on entropic force and brane cosmology

    Full text link
    Recently Verlinde proposed that gravity is an entropic force caused by information changes when a material body moves away from the holographic screen. In this note we apply this argument to brane cosmology, and show that the cosmological equation can be derived from this holographic scenario.Comment: 5 pages, no figures;references adde

    Spectroscopic applications and frequency locking of THz photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown GaAs

    Get PDF
    A compact, narrow-linewidth, tunable source of THz radiation has been developed for spectroscopy and other high-resolution applications. Distributed-Bragg-reflector (DBR) diode lasers at 850 nm are used to pump a low-temperature-grown GaAs photomixer. Resonant optical feedback is employed to stabilize the center frequencies and narrow the linewidths of the DBR lasers. The heterodyne linewidth full-width at half-maximum of two optically locked DBR lasers is 50 kHz on the 20 ms time scale and 2 MHz over 10 s; free-running DBR lasers have linewidths of 40 and 90 MHz on such time scales. This instrument has been used to obtain rotational spectra of acetonitrile (CH3CN) at 313 GHz. Detection limits of 1 × 10^–4 Hz^1/2 (noise/total power) have been achieved, with the noise floor dominated by the detector's noise equivalent power
    • …
    corecore