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Abstract 

Development of methodology for accurate and reliable condition assessment of civil 

structures has become increasingly important. In particular, the finite element (FE) model 

updating method has been successfully used for condition assessment of bridges. 

However, the success of applications of the method depends on the analytical 

conceptualization of complex bridge structures, a well-designed and controlled modal test 

and an integration of analytical and experimental arts. This paper describes the sensitivity 

analysis based FE model updating method and its application to structure condition 

assessment with particular reference to bridges, including specific considerations for FE 

modeling for updating and the model updating procedure for successful condition 

assessment. Finally, the accuracy analysis of damage assessment by model updating was 

investigated through a case study. 

Keywords: Condition assessment; civil structure; finite element model updating; 

damage; sensitivity analysis; modal analysis. 

 

1. Introduction 

It has been reported [1] that about 125,000 of the 585,000 bridges in the USA are 

deemed deficient. Condition assessment of bridges is largely based on visual observations 

and described by subjective indices which do not permit accurate evaluation of bridge 

dynamics, serviceability and safety. Because reliable assessment depends on quantitative 

rather than qualitative information, there is an urgent need and essential motivation to 

develop methodologies for objective and accurate condition assessment and reliability 

evaluation. 
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A significant amount of research has been performed on the condition assessment of 

existing bridges and relevant research has accelerated in recent years. Aktan et al. [1,2,3] 

described an integrated experimental and analytical methodology for structural 

identification and field testing aimed at condition assessment of bridges, through 

consideration of defects, deterioration, damage, bridge state and performance. Saraf [4] 

used nondestructive load testing methods to evaluate three existing reinforced concrete 

bridges. Wahab and Roeck [5] investigated the damage detection in bridges using 

curvatures of mode shapes. These investigations were based on the field testing and 

numerical analysis. The condition of these bridges was still difficult to assess 

quantitatively. The difficulty is that the deterioration and damage in the structure are 

difficult to describe mathematically. 

The finite element (FE) model updating method [6,7] has emerged in the 1990s as a 

subject of great importance for mechanical and aerospace structures. However, this 

updating technology can be difficult to apply as an engineering tool for civil engineering 

structures, because of the difficulties in prototype testing and experimental data analysis 

resulting from the nature, size, location and usage of these structures. Only recently, the 

civil engineering community has begun to adopt this technology. Cantieni [8] 

investigated model updating of a concrete arch bridge while Pavic et al. [9] and Reynolds 

et al. [10] applied the technique to footbridges and concrete floors. Research on different 

applications of the model updating method to damage assessment of a model bridge for 

wind tunnel testing, dynamic assessment of a cable-stayed bridge, residual stiffness 

assessment of a failed reinforced concrete (RC) slab, and load-carrying capacity of a 
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damaged RC beam bridge structure has been investigated by Brownjohn and Xia 

[11,12,13,14]. 

Since the FE model updating method integrates several disciplines, the success of its 

application to bridge condition assessment depends mainly on the interdisciplinary 

experience and skill of the analyst.  Meanwhile, it is expected that its application to civil 

engineering structures, especially to bridge structures will become popular. Hence, it is 

extremely valuable to summarize the experience and methodology. Based on this 

motivation, this paper describes the sensitivity analysis based FE model updating method 

and its application to bridge condition assessment, including the specific techniques in 

the FE modeling for model updating and the actual model updating procedure. In order to 

verify the structural condition assessment by the model updating, the accuracy analysis of 

damage assessment by the method was investigated through a case study of a damaged 

steel portal frame. 

 

2. Sensitivity based Updating Method 

The FE model updating method was developed through combining the FE analysis 

(FEA) with the experimental modal analysis (EMA). The aim was to correct the 

geometrical and/or physical parameters and/or boundary conditions of the initial FE 

model through a model tuning procedure based on the experimental results such as 

measured frequencies and mode shapes etc., and further to reproduce the dynamic 

performances of a structure with greatest accuracy compared with the experimental 

results. The FEA and EMA integrated analysis can remedy the deficiencies of using 

merely numerical analysis and obtain great improvement of numerical results. 
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In terms of the principle of FE model updating, the system matrices (mass, stiffness 

and possibly damping matrices) that completely describe the FEA are modified or 

updated with respect to the reference data which are generally the experimental modal 

parameters such as measured frequencies and mode shapes. Based on the modification of 

system matrices, model updating procedures can be classified as being iterative (local 

methods) or as one-step procedures (global methods). Local methods are based on 

corrections applied to local physical parameters of the FE model, and therefore are 

physically meaningful. Global methods directly reconstruct the updated global mass and 

stiffness matrices from the reference data, so lack the advantages of local methods. The 

effective and most popular local methods for model updating are generally based on the 

sensitivity analysis. In the formulation of parameter modification in FE models, the ‘true’ 

(or experimental) responses, such as frequencies or mode shapes, are expressed as 

functions of analytical responses, structural parameters and a sensitivity coefficient 

matrix. This is done in terms of a first order Taylor series as follows: 

{ } { } [ ] { } { }( )e a u oR R S P P= + −                                                                              (1) 

or 

{ } [ ]{ }R S PΔ = Δ                                                                                                    (2) 

where { } { } { }e aR R RΔ = − , { }eR  and { }aR  are vectors of experimental and analytical 

response values, respectively. { } { } { }u oP P PΔ = − , { }uP  and { }oP  are vectors of updated 

and current iterative parameter values, respectively. [ ]S  is sensitivity matrix. For all 

selected responses and parameters, the sensitivity matrix [ ]S  can be calculated as 

follows: 
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where, iR  and jP  represent a structural response and parameter, respectively. The 

subscript i = 1…N for N responses and j = 1…M for M parameters. The sensitivity matrix 

can be computed for all physical element properties (material, geometrical, boundary, 

etc.) by using direct derivation or perturbation techniques. This depends on whether mass 

and stiffness are proportional or non-proportional to the property. 

Equation (3) calculates the absolute sensitivities. This means that they use the units 

of the response and parameter values. If sensitivities for different types of parameters are 

to be compared, then the relative sensitivity matrix [ ]rS  is used and defined by: 

[ ] i
r jij

j

RS P
P

⎡ ⎤∂ ⎡ ⎤= ⎢ ⎥ ⎣ ⎦∂⎣ ⎦
                                                                                               (4) 

Furthermore, the relative sensitivities can be normalized with respect to the response 

value. The resulted sensitivities form the normalized relative sensitivity matrix [ ]nS  

which is defined by: 

[ ] [ ] 1 i
n i jij

j

RS R P
P

− ⎡ ⎤∂ ⎡ ⎤= ⎢ ⎥ ⎣ ⎦∂⎣ ⎦
                                                                                     (5) 

Equation (2) may be determined, over-determined or under-determined depending on 

whether the number of responses N is equal to, larger than or smaller than the number of 

parameters M, respectively. In any case, the parameter modification { }PΔ  in equation (2) 

can be solved using the pseudo-inverse technique [15]: 

{ } [ ] { }P S R+Δ = Δ                                                                                                   (6) 

where, [ ]S +  is the pseudo-inverse matrix of sensitivity matrix [ ]S  and is given by: 
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[ ]S +  can be computed using the Bayesian estimation or singular value decomposition 

techniques [15]. 

Since the Taylor’s expansion (1) is truncated after the first term, the neglected higher 

order terms necessitate several iterations, especially when { }RΔ  contains large values. It 

should be noted that when too large discrepancies exist between the experimental and 

analytical models, the validity of the Taylor series truncations to first order in equation 

(1) is undermined and iterative process is prone to divergence. Practical consequence of 

this is that the starting FE model prior to updating should be relatively close to the 

experimentally measured behavior. 

 

3. FE Modeling for Updating 

Finite element analysis has for some decades been a powerful tool for simulating 

structural behavior, but creating a good FE model is not an easy task. Many different 

modeling strategies and good practice guidelines are available [16] covering the selection 

of element types, degrees of freedom, appropriate analysis method, etc. These strategies 

depend on the skill and experience of the analyst, and on the intended application of the 

model (e.g. static and dynamic FE analysis require different FE models for the same level 

of accuracy). However, preparation of an FE model that will be a candidate for updating 
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requires some specific considerations of additional factors not normally taken into 

account in conventional FE model construction. 

The objective of FE model updating is modification of the inaccuracies or 

uncertainties in the structure, which must be expressed as parameters so that these 

inaccuracies/uncertainties can be assessed quantitatively. Therefore, it is vital to 

successful condition assessment of a structure whether the uncertainties in the structure 

can be represented by quantitative parameters as far as possible. If uncertainties in 

structures are not quantified, then the condition assessment of the structures cannot be 

done. 

When damage and/or deterioration are known to exist in a restricted area of a 

structure, the damaged zones will not generally be contained in a FE model unless some 

special facilities are incorporated. Because the damage reduces the structure 

geometrically and/or physically, specific ‘weak’ elements [11] can be used to represent 

quantitatively the damaged zones geometrically and physically in the FE model. Of 

course, determination of the parameters and locations of ‘weak’ elements is subjective 

but not optional because it must rely on the damage condition. As long as these ‘weak’ 

elements are updated, their updated values represent the condition of damage zones, e.g. 

damage extent. Fig. 1 shows a kind of ‘weak’ FE model of damaged joint. Using this 

idea, the damage in a model bridge [11], the residual stiffness of a failed reinforced 

concrete slab [13] and the load-carrying capacity of a damaged reinforced concrete beam 

structure [14] were identified successfully. Fig. 2 shows the FE model of a bridge deck 

damaged at midspan where four ‘weak’ beam elements were incorporated into the FE 

model. 
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A common problem in setting up an FE model is to determine the boundary 

conditions. A good way to simulate boundary conditions is to use support springs such as 

shown in Fig. 2. Their elastic stiffness values after updating will approximate the real 

boundary conditions. 

In order to obtain a reliable FE model and guarantee the physical significance of the 

updated parameters after updating, the FE model for updating requires a level of detail to 

represent geometric and structural form. An oversimplified FE modeling is unlikely to be 

successful for updating. When performing dynamic assessment of a curved cable-stayed 

bridge by model updating [12], the authors adapted two FE models of the bridge as 

candidates for updating. The first model, adapted for checking static load combinations 

and shown in Fig. 3, featured a ‘spine beam’ using conventional 3D beam elements to 

represent the deck girder [17,18]. These beam elements supposedly incorporated all the 

bending, torsional, and inertial properties of the wing-tip box-type deck of the bridge, 

whereas low density elements capable of transferring static loads, but not representing 

inertia properties, were used for the deck. The second model, shown in Fig. 4, detailed 

fully the geometrical properties of the deck in which the structural components of the 

wing-tip box-type deck were modeled by shell elements. The updated results applied to 

the first model were not ideal, with a maximum frequency error of 15%. To achieve this 

level of agreement, six selected parameters changed by 100%, losing their physical 

relevance. By condensing deck properties into a spine beam model, the original 

geometrical properties of the wing-tip box-type deck were lost. The updated results for 

the second model were more successful. All seven frequency differences between 
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updated and measured were less than 10%. The maximum changes of five selected 

parameters were by about 30%. 

 

4. Model Updating Procedure 

The model updating procedure includes generally three aspects [11,12]: 

(1) selection of ‘responses’ as reference data which are normally the measured data, 

such as measured frequencies and mode shapes;  

(2) selection of parameters to update, to which changes the selected responses should 

be sufficiently sensitive and must be uncertain; and  

(3) model tuning which is an iterative process to modify the selected parameters 

based on the selected reference data. 

Based on these general principles, an updating procedure can be conducted and its 

more detailed steps will be outlined, as follows. 

 

Selection of Updating Parameters 

In the three aspects of the model updating as described previously, the selection of 

the parameters to update is crucial because the FE model of the real structure is affected 

by updating the selected parameters. The important issues are, first, how many 

parameters should be selected, and, second, which parameters from the many candidates 

are preferred. Physically, the selected updating parameters must be uncertain in the 

model. Otherwise, the blindly updated structural components may lose their originally 

certain properties and produce meaningless results in the updated FE analysis. 

Mathematically, if the estimation of too many parameters is attempted, then the problem 
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may appear ill-conditioned or underdetermined because the observations are limited in 

vibration testing. To have a well-conditioned updating problem, and bearing in mind the 

limitation of the measurements, it is necessary to select those updating parameters that 

will be most effective in producing a genuine improvement in modeling of the structure. 

Therefore, the number of updating parameters should be kept small, and such parameters 

should be chosen with the aims of correcting recognized uncertainty in the model and 

ensuring that the data should be sensitive to them. One good way to assess this is to 

conduct a sensitivity analysis that computes the sensitivity coefficient defined by 

equation (3). The sensitivity analysis can be done using optimized proprietary software, 

such as FEMtools [19] or may be developed around existing FE codes using standard 

programming tools. When sensitivity analysis is used to help selection of parameters for 

model tuning, one should start with all possible parameters, identify sensitive and 

insensitive areas, and then eliminate ineffective (low sensitivity) parameters. Selection of 

effective parameters can also avoid the ill-conditioning of the sensitivity matrix [ ]S  in 

equation (2). If some responses are very sensitive to the selected parameters, and others 

are very insensitive to the same parameters, then ill-conditioning is likely to occur. 

 

Manual Tuning 

As previously mentioned, when doing the model tuning, it is very important to 

determine a suitable initial value of a selected parameter to provide a reasonable starting 

point. If the initial value is too different from its true value, and large discrepancies exist 

between the experimental and analytical models, then { }RΔ  in equation (2) may contain 

large values, which will result in the iterative process diverging. Usually, it is required to 
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carry out manual tuning by engineering judgement or relevant preliminarily estimation 

for obtaining a reasonable approximation before model tuning. This case may happen 

generally for uncertain parameters from boundary conditions, joints, welding parts, 

damage or deterioration. The manual tuning procedure, which may also include the 

addition or subtraction of complete elements or sets of elements is termed ‘macro-

updating’ [20]. 

 

Bounds of Updating Parameters 

In order to guarantee the physical significance of updated parameters and avoid 

physically impossible updated parameter values, the lower and upper bounds for the 

parameter values should be applied. If a parameter value reaches its allowable extreme 

during iterative model tuning, then the parameter becomes ineffective during the rest of 

the procedure. It is possible that convergence cannot be obtained to a satisfactory degree 

when parameter bounds are defined. A trade-off between physically acceptable parameter 

values and the convergence level is then required. 

 

Model Evaluation 

After finishing the model tuning, the updated FE model needs to be evaluated so as 

to determine whether the model updating procedure is successful or not. One way is to 

use the modal assurance criterion (MAC) [21] to check correlation of mode shapes. It is 

defined as follows: 

))((
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2

e
T
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T
a

e
T
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=φφ                                                                              (8) 



 13 

where, aφ  and eφ  are the analytical and experimental mode shape vectors, respectively. 

Given a set of experimental modes and a set of predicted modes, a matrix of MAC 

values can be computed. The mode shapes with a MAC value equal to 100% represent a 

perfect correlation (i.e. linear dependence), whereas modes which are completely 

orthogonal (i.e. linearly independent) have 0% MAC value. Generally, it is accepted that 

a value in excess of 90% should be attained for correlated modes. For the frequencies, the 

differences between the analytical and experimental values can be computed. If the MAC 

values between updated and measured models are high and frequency differences 

between updated and measured are low, then the model updating is deemed to be 

successful. 

An alternative way to check the reliability of the updated model is to rerun the 

updated numerical model with parameters perturbed about values of the updated 

parameters, taking the frequencies and mode shapes as reference data, and perform an 

updating procedure for the perturbed model [12]. If the perturbed model converges very 

fast to the updated model with low frequency errors and high MAC values, then the 

model updating is verified.  

 

5. Accuracy Analysis 

What is the accuracy of the bridge condition assessment by the method? To answer 

this question in a controlled laboratory-based study, a damaged steel portal frame was 

used to compare updated values of the geometrical parameters at damaged zones with 

their known real values. The frame consisted of three steel strips fixed at two ends and is 

shown in Fig. 5. Four positions in the frame were cut by saw to simulate the damage. The 
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depths of four cuts were all about 80% of the strip width, therefor producing serious 

damage in the frame. 

The experimental modal analysis was performed on the frame before and after the 

cut [22]. The first 10 measured frequencies mf  for the original frame (undamaged model) 

are listed in the second column in Table 1. The undamaged frame was numerically 

analyzed using FE method and its first 10 analyzed frequencies af  are listed in the third 

column in Table 1. The frequency difference percentages fΔ  and MAC  values between 

the analyzed and measured modes for the original frame are listed in the fourth and fifth 

column in Table 1, respectively. It can be seen that all of the fΔ  values were low and all 

of the MAC  values were high, hence the FE model simulated the original frame quite 

well. 

The first 10 measured frequencies mf  for the damaged frame after cutting are listed 

in the second column in Table 2 and the corresponding measured mode shapes are shown 

in Fig. 9. Comparing the measured frequencies between undamaged and damaged 

models, two features are found: (1) every modal frequency of the frame was decreased 

after cut; and (2) the frequency changes of the frame were not obvious until about 80% of 

strip width was cut. The maximum frequency change was only about 6%. 

In order to quantify damage in the cut frame, four ‘weak’ beam elements were 

incorporated into the initially undamaged FE model at known locations to simulate the 

four cuts. The geometrical parameters, cross section area xA  and moment of inertia zI  of 

the ‘weak’ beam elements were selected to update for capturing their ‘real’ values based 

on the measured data from the damaged frame. In addition, Young’s modulus of steel for 

all elements was also selected to update globally. The parameter would not be known to 
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high accuracy. A small estimation error may account for the small discrepancies between 

the analytical and experimental results for the undamaged frame. The rest of parameters 

were all certain and were not updateable; if all parameters were selected for updating 

locally for every element, than parameters that were certain would end up being updated, 

with the largest modifications locating the damage. Having located the damage, the 

certain parameters in the rest of the structure would be reset so that the damage in the 

identified areas could be quantified. The selected eight geometrical parameters of ‘weak’ 

beam elements selected for updating are listed in the second column in Table 3. The 

measured frequencies and MAC values from the damaged frame were selected as the 

responses or reference data for the ‘damaged’ FE model updating. Fig. 6 shows the 

envelope of normalized relative sensitivities of the responses to the selected eight 

geometrical parameters; all values of the sensitivity coefficients were rather low. These 

low values explain why the dynamic properties of the frame changed very little in spite of 

cutting by about 80% of the strip width. 

Taking reasonable initial values of the updating parameters and doing model tuning 

based on the measured data from the damaged frame, the selected parameters should be 

updated close to their real values. The updated frequencies uf  are listed in the third 

column in Table 2. The frequency differences fΔ  and mode shape correlation MAC  

values between the updated and measured models are listed in the fourth and fifth column 

in Table 2, respectively. These show maximum frequency difference of only 2% and very 

high MAC  values larger than 96%. The other ways to correlate the updated data with the 

measured data are shown in Figures 7 and 8. Fig. 7 shows pairing of frequencies between 

the updated (FEA) and measured (EMA) models where errors are shown as departures 
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from a diagonal line with unit slope. Fig. 8 shows the MAC matrix with high values on its 

diagonal corresponding to paired modes. The mode shapes of the updated frame model 

are shown in Fig. 9 and are very close to the measured mode shapes. All of these 

comparisons between updated and measured data illustrated that the model updating was 

quite successful. 

The updated value of Young’s modulus was 194GPa , a reduction of 3% compared 

with the initially assumed value 200 aGP . All selected geometric parameters 

corresponding to original, damaged and updated are listed in Table 3. This table provides 

the database to check the accuracy of damage condition assessment. The second column 

in Table 3 lists the selected parameters P . The third and fourth columns in Table 3 give 

the values of parameters of the original frame oP  and parameters of the damaged frame 

cP , respectively. The parameters’ change ( )o c oP P P−  illustrates the damage extent of 

the frame after cut. The values of updated parameters uP  and their differences with the 

parameters cP  of the cut frame ( ) /c u cP P P−  are listed in the fifth and sixth column in 

Table 3, respectively. All updated parameters uP  values were larger than cP  values of the 

cut frame and both differences were all smaller than 10%. This was due partly to a fact 

that the width of cut was about 2mm, whereas the length of ‘weak’ beam element to 

represent the cut was 20mm. Values of the assessed damage quantity ( ) /o u oP P P−  are 

listed in the seventh column in Table 3 from which it can be seen that all values were 

very close to 80% which was the damage extent of the damaged frame by cut. Judged by 

these results, the damage assessment for the damaged frame by model updating method 

provided quantitatively accurate information. 
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6. Limitations to condition assessment by model updating 

Experience in model updating has shown that the limitations tend to be in terms of 

the ability of the FE model to represent true behaviour, and in the ability to identify a 

enough modal parameters (frequencies and mode shape ordinates) with sufficient 

accuracy. The manual tuning includes not just manipulation of structural parameters but 

also engineering judgment as to the level of detail and reliability of assumptions made in 

the FE model. For the EMA, even with the best equipment, field conditions may limit the 

accuracy and resolution (spatially or temporally) of the measurements and statistical 

uncertainties will carry through to the final structural parameter estimates. 

Both aspects, manual tuning, which can be guided by 'expert systems', and reliability 

of updated parameters are being investigated. 

Conclusions 

To implement a successful condition assessment of bridge structures by model 

updating method, the following specific techniques are of significance: 

(1) The FE model for model updating is different from a conventional FE model. In 

particular the structure should be modelled with as much detail as possible to 

represent geometric and structural form. 

(2) The damaged zones in a structure must be quantified somehow. For this purpose, 

‘weak’ elements can simulate the known or assumed damaged zones very well 

and updated values of associated parameters represent the damage extents in the 

damaged structure. 
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(3) The selected parameters must be uncertain physical or geometrical properties and 

should be sensitive to the selected responses. Sensitivity analysis combined with 

sound engineering judgement is a good way to select updating parameters. 

(4) It is necessary to perform limited manual updating based on trial and error to 

obtain suitable initial values of selected parameters as a starting point for model 

tuning. 

(5) It is possible to identify and quantify damage. 
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No 

Measured 
frequencies 

mf  
(Hz) 

Analytical 
frequencies 

af  
(Hz) 

a m

m

f ff
f
−Δ =  

(%) 
MAC  
(%) 

(1) (2) (3) (4) (5) 
1 4.52 4.64 2.67 99.3 
2 17.43 18.02 3.38 96.5 
3 27.99 28.61 2.22 97.9 
4 30.03 31.13 3.65 95.3 
5 61.83 63.83 3.23 95.0 
6 74.41 75.93 2.04 97.2 
7 87.80 89.20 1.59 95.2 
8 133.03 136.04 2.26 95.2 
9 155.46 158.61 2.03 96.2 
10 165.70 168.08 1.44 93.9 

 

Table 1. Correlation between analyzed and measured modes of undamaged model 
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No 

Measured 
frequencies 

mf  
(Hz) 

Updated 
frequencies 

uf  
(Hz) 

u m

m

f ff
f
−Δ =  

(%) 
MAC  
(%) 

(1) (2) (3) (4) (5) 
1 4.24 4.32 1.85 99.5 
2 16.85 16.97 0.69 99.4 
3 26.66 26.15 -1.93 96.2 
4 29.74 29.44 -1.01 96.2 
5 60.80 61.38 0.96 98.5 
6 71.19 70.52 -0.95 97.7 
7 85.99 85.22 -0.90 97.6 
8 130.11 130.43 0.24 97.0 
9 152.64 152.42 -0.14 96.2 
10 162.96 161.50 -0.89 96.7 

 

Table 2. Correlation between updated and measured modes of damaged model 
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No 
Parameter 

P  
Original 

oP  

Cut ( 80%)o c

o

P P
P
−

=  

cP  
Updated 

uP  

c u

c

P P
P
−  

(%) 

o u

o

P P
P
−  

(%) 
(1) (2) (3) (4) (5) (6) (7) 
1 1xA (m2) 3.0×10-4 6.00×10-5 6.36×10-5 -6.00 78.80 
2 2xA (m2) 3.0×10-4 6.00×10-5 6.38×10-5 -6.33 78.73 
3 3xA (m2) 2.4×10-4 4.80×10-5 5.05×10-5 -5.21 78.96 
4 4xA (m2) 2.4×10-4 4.80×10-5 5.07×10-5 -5.62 78.88 
5 1zI (m4) 9.0×10-10 1.80×10-10 1.83×10-10 -1.67 79.67 
6 

2zI (m4) 9.0×10-10 1.80×10-10 1.82×10-10 -1.11 79.78 
7 3zI (m4) 7.2×10-10 1.44×10-10 1.55×10-10 -7.64 78.48 
8 

4zI (m4) 7.2×10-10 1.44×10-10 1.48×10-10 -2.78 79.44 
 

Table 3. Geometric parameters’ values and their changes after updating 

oP  known original value 

cP  known value after cutting 

uP  value determined from updating 
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Fig. 1. A damaged joint model with weak beam  
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Fig. 2. A damaged bridge FE model with ‘weak’ beam elements 
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Fig. 3. FE model of bridge with spine beam 
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Fig. 4. FE model of bridge with full deck 
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Fig. 5. Damaged steel portal frame (Unit: m) 
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Fig. 6. Sensitivity envelope of responses to parameters 
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Fig. 7. Frequency pairing between updated and measured data 
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Fig. 8. MAC Matrix between updated and measured data 
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Mode 1 (4.24 Hz) 

Mode 2 (16.85 Hz) 

Fig. 9. Mode shapes of damaged portal frame model 
                 undeformed;      updated;   •  measured 
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Mode 3 (26.66 Hz) 

Mode 4 (29.74 Hz) 

Fig. 9. Mode shapes of damaged portal frame model 
                 undeformed;      updated;   •  measured 
           (Continued) 
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Mode 5 (60.80 Hz) 

Mode 6 (71.19 Hz) 

Fig. 9. Mode shapes of damaged portal frame model 
                 undeformed;      updated;   •  measured 
           (Continued) 
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Mode 7 (85.99 Hz) 

Mode 8 (130.11 Hz) 

Fig. 9. Mode shapes of damaged portal frame model 
                 undeformed;      updated;   •  measured 
            (Continued) 
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Mode 9 (152.64 Hz) 

Mode 10 (162.96 Hz) 

Fig. 9. Mode shapes of damaged portal frame model 
                 undeformed;      updated;   •  measured 
            (Continued) 


