3,780 research outputs found

    Driving a car with custom-designed fuzzy inferencing VLSI chips and boards

    Get PDF
    Vehicle control in a-priori unknown, unpredictable, and dynamic environments requires many calculational and reasoning schemes to operate on the basis of very imprecise, incomplete, or unreliable data. For such systems, in which all the uncertainties can not be engineered away, approximate reasoning may provide an alternative to the complexity and computational requirements of conventional uncertainty analysis and propagation techniques. Two types of computer boards including custom-designed VLSI chips were developed to add a fuzzy inferencing capability to real-time control systems. All inferencing rules on a chip are processed in parallel, allowing execution of the entire rule base in about 30 microseconds, and therefore, making control of 'reflex-type' of motions envisionable. The use of these boards and the approach using superposition of elemental sensor-based behaviors for the development of qualitative reasoning schemes emulating human-like navigation in a-priori unknown environments are first discussed. Then how the human-like navigation scheme implemented on one of the qualitative inferencing boards was installed on a test-bed platform to investigate two control modes for driving a car in a-priori unknown environments on the basis of sparse and imprecise sensor data is described. In the first mode, the car navigates fully autonomously, while in the second mode, the system acts as a driver's aid providing the driver with linguistic (fuzzy) commands to turn left or right and speed up or slow down depending on the obstacles perceived by the sensors. Experiments with both modes of control are described in which the system uses only three acoustic range (sonar) sensor channels to perceive the environment. Simulation results as well as indoors and outdoors experiments are presented and discussed to illustrate the feasibility and robustness of autonomous navigation and/or safety enhancing driver's aid using the new fuzzy inferencing hardware system and some human-like reasoning schemes which may include as little as six elemental behaviors embodied in fourteen qualitative rules

    Dynamic task allocation for a man-machine symbiotic system

    Get PDF
    This report presents a methodological approach to the dynamic allocation of tasks in a man-machine symbiotic system in the context of dexterous manipulation and teleoperation. This report addresses a symbiotic system containing two symbiotic partners which work toward controlling a single manipulator arm for the execution of a series of sequential manipulation tasks. It is proposed that an automated task allocator use knowledge about the constraints/criteria of the problem, the available resources, the tasks to be performed, and the environment to dynamically allocate task recommendations for the man and the machine. The presentation of the methodology includes discussions concerning the interaction of the knowledge areas, the flow of control, the necessary communication links, and the replanning of the task allocation. Examples of task allocation are presented to illustrate the results of this methodolgy

    The 3-D world modeling with updating capability based on combinatorial geometry

    Get PDF
    A 3-D world modeling technique using range data is discribed. Range data quantify the distances from the sensor focal plane to the object surface, i.e., the 3-D coordinates of discrete points on the object surface are known. The approach proposed herein for 3-D world modeling is based on the Combinatorial Geometry (CG) method which is widely used in Monte Carlo particle transport calculations. First, each measured point on the object surface is surrounded by a small sphere with a radius determined by the range to that point. Then, the 3-D shapes of the visible surfaces are obtained by taking the (Boolean) union of all the spheres. The result is an unambiguous representation of the object's boundary surfaces. The pre-learned partial knowledge of the environment can be also represented using the CG Method with a relatively small amount of data. Using the CG type of representation, distances in desired directions to boundary surfaces of various objects are efficiently calculated. This feature is particularly useful for continuously verifying the world model against the data provided by a range finder, and for integrating range data from successive locations of the robot during motion. The efficiency of the proposed approach is illustrated by simulations of a spherical robot in a 3-D room in the presence of moving obstacles and inadequate prelearned partial knowledge of the environment

    Networked Predictive Control of Uncertain Constrained Nonlinear Systems: Recursive Feasibility and Input-to-State Stability Analysis

    Get PDF
    Abstract-In this paper, the robust state feedback stabilization of uncertain discrete-time constrained nonlinear systems in which the loop is closed through a packet-based communication network is addressed. In order to cope with model uncertainty, timevarying transmission delays, and packet dropouts (typically affecting the performances of networked control systems), a robust control scheme combining model predictive control with a network delay compensation strategy is proposed in the context of non-acknowledged UDP-like networks. The contribution of the paper is twofold. First, the issue of guaranteeing the recursive feasibility of the optimization problem associated to the receding horizon control law has been addressed, such that the invariance of the feasible region under the networked closed-loop dynamics can be guaranteed. Secondly, by exploiting a novel characterization of regional Input-to-State Stability in terms of time-varying Lyapunov functions, the networked closed-loop system has been proven to be Input-to-State Stable with respect to bounded perturbations

    A Deadbeat Observer for Two and Three-dimensional LTI Systems by a Time/Output-Dependent State Mapping

    Get PDF
    The problem of deadbeat state reconstruction for non-autonomous linear systems has been solved since several decades, but all the architectures formulated since now require either high-gain output injection, which amplifies measurement noises (e.g., in the case of sliding-mode observers), either state augmentation, which yields a non-minimal realization of the deadbeat observer (e.g., in the case of integral methods and delay-based methods). In this context, the present paper presents, for the first time, a finite-time observer for continuous-time linear systems enjoying minimal linear-time-varying dynamics, that is, the observer has the same order of the observed system. The key idea behind the proposed method is the introduction of an almost-always invertible time/output-dependent state mapping which allows to recast the dynamics of the system in a new observer canonical form whose initial conditions are known

    Fast-convergent fault detection and isolation in a class of nonlinear uncertain systems

    Get PDF
    The present work proposes a fast-convergent fault detection and isolation (FDI) scheme for linear systems affected by model uncertainties, such as unknown inputs or unbounded nonlinearities. The finite-time convergence is attained by transforming the I/O signals through Volterra operators with suitably designed kernel functions. A novel feature of the proposed approach is the exploitation of a system decomposition that allows removing the effect of intractable uncertainties while recasting the system dynamics in a form applicable for Volterra operators to achieve non-asymptotic estimation. Remarkably, the proposed approach can reconstruct the state variables of the system in an arbitrarily short time and the fault can be diagnosed efficiently by imposing detection and isolation thresholds on transformed signals. The detectability and isolability of the fault are also characterized. The proposed FDI scheme is applied in simulation to a web process system to diagnose the presence of actuator faults. Simulation results confirm the effectiveness of the proposed scheme in two scenarios with nonlinear uncertainties. Furthermore, comparisons are made between the proposed method and a Sliding Mode Control (SMC) method in terms of estimation performance and computational complexity

    Volterra's kernels-based finite-time parameters estimation of the Chua system

    Get PDF
    In this work, the unknown set of parameters of the Chua system is recovered under the hypothesis that the voltages of the capacitors are available. The system is shown to be algebraically observable and identifiable with respect to the chosen outputs. Focusing on the differential equations, the Volterra kernel-based approach is used to perform an estimation without the uncertainty of the unmeasurable derivatives and the unknown initial conditions

    Deadbeat Source Localization from Range-only Measurements: a Robust Kernel-based Approach

    Get PDF
    This paper presents a novel framework for the problem of target localization based on the range information collected by a single mobile agent. The proposed methodology exploits the algebra of Volterra integral operators to annihilate the influence of initial conditions on the transient phase, thus achieving a deadbeat performance. The robustness properties against additive measurement perturbations are analyzed, and the bias caused by the time discretization is characterized as well. Extensive simulation results and comparisons are provided showing the effectiveness of the proposed technique in coping with both stationary and drifting targets
    • …
    corecore