3－D World Modeling With Updating Capability Based on Combinatorial Geometry

M．Goldstein，F．G．Pin，G．de Saussure，and C．R．Weisbin Oak Ridge National Laboratory

Oak Ridge，TN 37831

1．Abstract

This paper describes 3－D world modeling technique using range data．Range data quantify the distances from the sensor focal plane to the object surface，fee．，the 3－D coordinates of discrete points on the object surface are known．The approach proposed herein for 3－D world modeling is based on the Combinatorial Geometry（CG）Method which is widely used in Monte Carlo particle transport calculations．First，each measured point on the object surface is surrounded by a small sphere with a radius determined by the range to that point．Then，the 3－D shapes of the visible surfaces are obtained by taking the（Boolean）union of all the spheres．The result is an unambiguous representation of the object＇s boundary surfaces．The＂pre－learned＂partial knowledge of the environment can be also represented using the CG Method with a relatively small amount of data．Using the $C G$ type of representation，distances in desired directions to boundary surfaces of various objects are efficiently calculated．This feature is particularly useful for continuously verifying the world model against tie data provided by a range finder，and for int－ grating range data from successive locations of the robot during motion．The efficiency of the proposed approach is illustrated by simulations of a spherical robot in a 3－D room in the presence of moving obstacles and inadequate pre－learned partial knowledge of the environment．

2．Introduction

An autonomous robot must have sensory capability to deal with unknown or partially known environments． The sensor derived data need to be processed to an appropriate internal representation of the external world． The external world to be described is fundamentally three－dimensional，involving object occlusion．Most comp－ ter vision research performed during the past twenty years has concentrated on using intensity images as sensor data．The imaging hardware（cameras）for these studies typically project a three－dimensional scene onto a two－dimensional image plane，thus providing a matrix of gray level values representing the scene from given viewpoint．These values indicate the brightness at points on a regular spaced grid and contain no explicit information about depth．Methods that use intensity information only for deriving 3－D structure are usually computationally intensive．This computationally expensive processing arises due to the fact that correspon－ dence of points between different views must be established and a complex system of nonlinear equations must be solved（［1］－［5］）．

In recent years digitized range data have become available from both active and passive sensors，and the quality of these data has been steadily improving（［6］－［8］）．Range data quantify the distances from tie sensor focal plane to an object surface．Since depth information depends only on geometry and is independent of illus－ mination and reflectivity，intensity image problems with shadows and surface markings do not occur．Therefore． the process of representing 3－D objects by their shape should be less difficult in range images than in intensity images．The problem addressed by this paper is the external world modeling using range data．Unique require－ ments for such a model are：
a）Allow representation of a general 3－D unknown or partially known environment，based on range data．
b）Allow for minimal fast memory for storage．
c）Allow the introduction of a feedback loop for continuous verification of the world model against the data provided by the sensor（efficient distance calculation）．
d）Allow for efficient integration of the range data from multiple views．
e）Allow for efficient navigation and manipulation．
A wide variety of techniques have been developed for representing $3-0$ objects for digital computing pur－ poses．There are methods which describe the surface boundary and methods mich represent the coject＇s volume． The simplest boundary representation is using n－sided planar polygons（triangles，quadrilaterals．etc．）which can be stored as a list of 3－D node points along with their relationship information．Arbitrary surfaces are approximated to any desired degree of accuracy by using many planar polygons．This type of representation is popular because model surface area is well defined and all object operations are carried out using piecewise－ planar algorithms．The next step in generality is obtained using quadric surface boundary representation．More advanced techniques for representing curved surfaces with higher order polynomials or splines are mentioned in the computer graphics and CAD literature（［9］－［12］）．There are many different techniques of this type：however
tOn leave from the Nuclear Research Centre－Megev，Israel．
timy are gemerally not very compact in terms of data storage, nor are they computationaliy efficient in calculating distances to boondary surfaces[13]. The best known volumetric representations are the oct-tree[14] generalized cylinder[15] and miltiple 2-D projection views[16]. The generalized cylinder approach is mell suited to many real world shapes. However, it becomes just cbout impossible to use this representation for large, thin objects. The mitiple 2-D projection view is not aeneral purpose technique since different objects may have stimilar 2-0 projections. The oct-tree representation is used in many world models. However, the indexing problem[17] is seriously affecting the efficiency of this tecnoique. In conclusion there is a need for a fast and robust tecinaique for building 3-D models of arbitrarily shaped objects.

In Chapter 3, a proposed external world modeling procedure and an efficient distance calculation algorithe are presented. A technique for integrating the range data from mitiple views and a contimuous verffication procedure of the world model versus the range data provided by the sensor is fllustrated in chapter 6 . Finally. the feasibility of the proposed approach is illustrated in Chapter 5 by simulations of a spherical recot navigating in a 3-0 room in presence of static and moving obstacles and inadequate pre-learned partial taculedge of the enviromment.

3. Representiog 3-0 Surfaces Using the Condactorial Cenmetry

The basic problem addressed in this paper is one of representation. The proposed approach is based on the Combinatorial Geometry (C6) method[18] mich is wdely used in Monte Cario simulation of particle t-ansport in 3-D geometries. In CG (also known as constructive solid Geometry (CSG) in computer graphics and cal literature) solids are represented as combinations of priaitive solids or "building blocks" (i.e.. spheres, cylinders. boxes, etc.) using the Boolean operations of union, intersection and difference. The storage data structure is a binary tree mere the terminal nodes are instances of primitives and the branching nodes represent boolean operators. Any 3-D known object can be represented by a (Boolean) combination of prinitive solids or deionaed superquadrics[19]. This representation is especially suitable for describing pre-learned partial knowledge of the environment. An example of descrioing an object composed of two boxes, one of them with a cylindrical mole is tllustrated in fig. 1. The result is a concise, unambiguous and complete representation of the aject volume and boundary surface.

ORNL-OWC 86-43942

Fig. 1. Representing a 3-D object using Combinatorial Geometry. a - given ooject and its CG representation. b - the storage data tree.

The result of a range scan is a mitix of distances from the sensor focal plane to an object surface. In other words. the coordinates of discrete points on the "visible" parts of the boundary surfaces of different objects in the external world of the robot. are known. Let de the (small) angle between two successive "reading" directions of the sensor. First, each discrete point i, is surrounded by small solid sphere with a radius, $r_{i}=\operatorname{ma}\left(R_{i} \sin a_{0} \Delta R_{i}\right)$. Where R_{i} is the range to point i. and ΔR_{i} is the associated measurement error. Then, the approximate $3-0$ shape of the visible boundary surfaces is obtained directly by tating the wion of all the spheres (see Fig. 2).

ORNL-DWG 86-46943

Fig. 2. Describing the shape of 3-D objects using spheres.

The reason for using spheres is to keep the representation as comact as possible. Describing the sphere for a particular discrete point in space means adding only one additional parameter (the radius) to tie coordinates of the discrete point mich are provided by the sensor. The radius r_{i} is defined as r_{i} mal R_{i} sin $a_{\text {, }}$ $\mathbf{A R}_{\mathrm{i}}$) to avoid the appearance of "holes" in the geometry and to take into account the range uncertaime. Using
this definition for r_{1}, neighbor spheres overlap one mother and the boundary surface of the union of all spheres is continuous (without noles) from the robot's point of view. Finally, it is abyious that using the ssphere" procedure, the shape of the boundary surfaces is distorted. However, the distortion is practicaliy proportional to the range to each point since the rampe uncertainty is relatively small. In other words. the resolution of the model is improved as the range to the surface is decreased.

3.1. Distance Calculation tn CG Dapresentation

A very useful feature of the CB_{c} representation is its efficiency in calculating distances to $3-0$ surfaces In a desired direction. Doserving discontinuities in the range data greater than the maximum size of the robot. the sceme is partitioned in many different zones. A zone ts defined as the union of small spheres located between two successive discontinuities in the range data. Using the storage data structure mentioned in Chapter 3. two tables are defined: the first one includes the spatial location of the small spheres; the second one identifies the different zones in terms of these spheres. The distance to $3-0$ surfaces in a desired direction from aiven point, is calculated in two steps:
a) Each zone is surrounded tightly by a box (rectangular parallelepiped). Since the boxes are approximate bounding configurations, intersections of a given ray with a box does not necessarily imply intersection with any particular sphere. In addition, the different orientations of the sphere clusters tmply that bounding boxes can intersect, and therefore mitiple boxes may mave to be checked for penetration by a given ray. The box (boxes) penetrated by the ray is determined by calculating the intersection points between the boxes and the ray. A list consisting of the boxes physically penetrated by the ray, is defined. The corresponding list of zomes is used to determine the penetration point.
b) Determine the small sphere penetrated by the ray and calculate the penetration point. This is done by considering only the spheres included in the zones listed in the first step. Using this epproach, only a small number of spheres are checked for penetration, and therefore significant computation time is saved.

It should De mentioned that the boxes surrounding the zones are used only internally during distance calculations and they are not affecting the geometric description of the 3-D surfaces. During path planning, "tentative paths" are checked for potential collision by calculating the distances to object surfaces from scattered points on the robot's surface in the desired direction. These distances can be effectively calculated by using the CG representation, and the procedure outlined above.

4. Updating the Morld Model

Automatic construction of 3-0 models of objects from multiple views is an important problem in computer vistion. In the past, a number of different tecnniques have deen used for representation and modeling of 3-0 objects for computer vision applications([20]-[21]). However, there is m absence of fast and rooust technique for building 3-D models of arbitrarily shaped objects. The process of constructing 3-0 models for objects involves integrating the range data from multiple views. In general, the integration process performs matching to establish correspondence between the views. deteraines the interframe transpormations to register the views in a common reference coordinate system and then merges the data. The difficult and time consuming step in the above process is the muthing step required to establish a correspondence. Much of the previous research efforts have been directed toward solving the difficult correspondence problem. The algoritha presented in this pader, does not require any correspondence between different views, because the world model uses a universal coordinate system with the origin arbitrarily located at the rooot's initial position. According to the representation algoritha described in Chapter 3. the accuracy with mich a certain point in space may de ooserved by the robot depends upon the distance between the robot and the point. This fact is translated to the radius of the sphere surrounding a particular point in the CG representation. Therefore, a point in space should de kept in memory along with the most accurate information (shortest observation distance). In other words, for each measured point* in space. the shortest observation distance in the robot's history should be deterained. The min problew in implementing this approach is the fact that since the sampling procecure of range data is discrete, the prooability of a particular point to de sampled from two different positions of the robot is zero. In other words. each "measured point" is sampled just once during the robot history. The solution implemented in our approach follows an iterative algoritha using the oold data" acquired before the current scan and the "new data" acquired during the current scan:
a) The "old data" is checked from the current position of the robot. Using the world model based on the -old data'. distances to 3-0 surfaces from the robot's current position in the direction of points in the "old data" are calculated. If the distance to $3-0$ surfaces is smaller than the euclidean distance to the sphere surrounding the point then this particular point cannot de seen from the current position of the rovot and the point representation is kept unchanged. therwise. the "old" radius of the surrnunging sonere is compared with the "new" radius determined oy the euclidean distance from the current position of the robot and the smallest radius is chosen between the old and the new radit.
D) The "new data" acquired from the current position of the rooot is checked against the oold data". If the "new" point (provided by the sensor) is located within the world model dased on the old data (within a sphere surrounding on "old" point) then the new point is rejected and therefore no new sphere is added to the world model.

If the "inew point is outside the old world model, then the distance to 3-D surfaces in the "new point direction is calculated (using the old world model). If the cotained distance is greater than the range to the "mew" point (provided by the sensor). the "new" point is added to the world model as a sphere with a radus deternined by the range to the point. Otnerwise (the obtained distance is saller than the range to the point) the cold" point (licated approxiantely in the save direction, but closer to the robot) is erased from the model and the "hew point is added to the world model. This is the case of moving objects, in mith the "old" data should be contimously verified and updated.
c) Verification of pre-learned geometric knowledge of the enviroment.

The sensor derived data is compared with the calculated distances cotained from scanning the pre-learned geometric enviroment. The pre-learned data is represented in a very concise way using the cb representation. If the "real" range in a certain afrection is found to de similar (within the uncertainty of the pre-learmed data) to the calculated range in the same direction. the representation is kept unchanged and no point is added to the world model. If the real range is samiler than the calculated range, the new real point is added to the world model. Finally, if the real range is greater than the calculated range, the entire pre-learned object is removed from the world model and the "real" point is added to the representation.

5. Simple Protiens

The efficiency of the proposed morld model is illustrated in several simulations of a spherical robot navigating in 3-0 room in presence of static and moving obstacles and inadequate pre-learned partial knowledge of the enviroment. The robot is assumed to move in a plane parallel to the floor, along straight lines. The origin of cooratinates is arbitrarily located at the robot's starting position. The goal coordinates are known a-priori. The external world geometry, the robot starting position and the goal location are illustrated in Fig. 3. The radius of the spherical robot is 3 cm . The plane of motion is 30 cm off the floor. The navigation algorithm used in the sample problems is described in detail in Ref. 28.

Fig. 3. The geometry of the room.

To illustrate the efficiency of the proposed technique for building the world model. four samie problems have been considered. In the first problee the 3 -D environment is completely uninown and the robot is representing the surrounding environment using the range data provided by the sensor. Figures f-8 illustrate the plane of motion during the robot's journey from its initia! position to a final position mere he can directly "see" the goal. The morld representation is continuously updated using the tnformation provided by the sensor from different reading positions of the rooot. It can be seen that as the robot proceeds to the goal the world representation becomes more complete.

In the second problem (Figs. 9-13), the box 81 and the prise ${ }^{p}$ are provided a-priori to the rodot (prelearned knowledge). The robot is verifying the accuracy of the pre-learned information and after finding it correct, is representing the two objects using two CG primitives (Box and Prism). Without using the sphere type of representation. The representation of the overall 300 morld is thus more concise than in the first problem. in with the solere procedure was used to represent all oojects.

Fig. 4
Fig. 5

Fig. 6

Fig. 7

fig. 8

The external morld geometry considered in the 200 last probless is stallar to the geometry of the first two probles. except that the boxes 81 . S2 and the cylinder C are reaved from the sceve. In the thire probiem the box 83 and the prisa P are defined as pre-learmed informition wich (intentionally) mas provided inaccurately to the robot. From Figs. $14-17$ it can be seen that the rocot is werifying the pro-leorned cata and finding that the box is inaccurately positioned (fig. 14) is using the sensor (real) data only to represemt it (figs. 15 and 16). At a later stage, (Fig. 17) the robot can drectly check the pre-learned information for the prisa (which was previously occluded) and finding ft incorrect is rewoving the prisa from maory. The prisa is then accurately represented using the data provided by the sensor.

In the last exaple, the box and the prisa are correctly provided as pre-learned information, and the "unk nown sphere is moving forward and backward betmeen successive positions of the robot. Figure 18 illustrates the environment with the sphere at its initial posttion. While tive robot is moving to the second mesition (Fig. 19) the sphere is moving forward. The previous information about the sphere is then checked, found incorrect and romoved Prom the robot's memory. Finally. mien the robot is reacining the next (third) position. the sphere has moved back to its intilal position. It can be seen (Fig. 20) that the robot is teeping tme previous information about the sphere. since it is non occiuded by the "real" data and therefore camot be verified. If at a later stage the robot is agatn in a position to directly "see" the "old" position of the sphere, this previous inforsation will be checked and eventually rewoved from the world codel.

These and the following figures shown in this paper have been praduced using a compuler printer and a very simple ploteing routine. Since the maximum resolution of the printer along the Y axis (across the page) is 130 characters, certain eristing spheres having diameters san!ler than the printer resoluzion are mot minted and therefore some "noles" ay artificially appar on surfaces wich are in fact contimuous.
6. Conclusion

The proposed approach for adeling the external world using tene compinatorial ceometry mas fand proaising. The range data from successive locations of the robot during motion can be effectively combined and given an adequate world representation. The pre-learned knouledge and moving oojects in the scene can be dfectively verified and represented in the world model. The computation time per opicture" including the stimiated range scan. ooseling the geometry. trajectory planning and plotting the plame of totion was 30 s to 1 min CPU time of vax-8500 Computer, depends upon the scene complexity and the muber of tentative paths considered. More than 508 of the computation tiae is used far plotting the plame of dotton and for calculating distances in a given

Fig. 9

Fig. 11

Fig. 10

Fig. 12

Fig. 13

Fig. 15

皿R

Fig. 14

Fig. 16

Fig. 17

Fig. 18

Fig. 19
direction from discrete points. These calculations can be executed independently and therefore, performing the same calculations on a parallel or concurrent computer may significantly reduce the computation tire. Future work using the proposed external morld modeling appronch will focus on the following issues: sceme segrentation into objects, feature point extraction, recognition of 3-D objects from range data, replacing the sphere representation with a more concise CG volunetric representation of the recagnized objects and finally tmplementation of this method on the NCUBE Machine and experimental verification using the HERMIES-II robot.

7. Acknowledgments

The first author is grateful to the Muclear Research Centre-Negev. Israel for the support and encouragement during the preliminary stage of this work. The authors gratefully acknowledge the support provided by Dr. 0 . Manley of the Department of Energy Office of Basic Energy Sciences, Dr. H. Aiter of Office of Nuclear Energy, Dr. D. Bailey of Spent fuel Management and Reprocessing Systems and to Karen Harber for preparing the eanuscript. This research was performed under DOE contract ©E-ACO5-840R21400 with Martin Marietta Energy Systems. Inc.

8. References

[1] R. O. Duda and P. E. Hart, "Pattern Classification and Scene Analysis." wiley Interscience, Mew York (1972).
[2] S. Ullman, "The Interpretation of Visual Motion, MIT Press, Cmoridge, Massachusetts (1979).
[3] J. W. Roach and J. K. Aggarwal, "Determining the Movement of Objects from a Sequence of Images," IEEE Trans. Pattern Ana1. Machine Intell.. PAM1-2. 554-564 (November 1980).
[4] H. H. Wagel. "Representation of Moving Rigid Objects Based on Visual Ooservations." Computer 14, 29-39 (August 1981).
[5] H. P. Moravec, "Rover Visual Obstacle Avoidance," in Proc. 7th Int. Conf. Artif. Intell., Vancouver, Canada, Rugust 24-28, 1981.
[6] M. J. Magee and J. K. Aggarwal, "Determining Motion Parameters Using Intensity Guided Range Sensing," in Proc. 7th Int. Conf. Pattern Recogn., pp. 541-583, Montreal, Canada, July 30-August 2, 1985.
[7] D. Laurendeau and D. Poussart, 3-D Model Building Using a Fast Range Finder," IEEE Proc. of Comp. Vision and Pattern Recogn., pp. 424-426 (June 1986).
[8] .. Hebert, "Outdoor Scene Analys is Using Range Data," Proc. 1986 IEEE Int. Conf. on Robotics and Automation, 3, 1426-1432 (April 1986).
[9] R. T. Farouki and J. K. Hinds, "A Hierarchy of Geometric Forms." IEEE Comp. Graphics Appl. 5, 51-78 (May 1985).
[10] I. D. Faux and M. J. Pratt, "Computational Geometry for Design and Manufacture," Ellis Horwood, Chichester. U.K. (1979).
[11] W. Tiller, "Rational B-Spline for Curve and Surface Representation." IEEE Comp. Graphics Appl. 3, 61-69 (Movember 1983).
[12] T. W. Sedenberg and D. C. Anderson. "Steiner Surface Patches," IEEE Comput. Graphics Appl. 5, 23-36 (May 1985).
[13] P. Besl and R. Jain, "An Overview of Three-Dimensional Object Recognition," The University of Michigan, RSD-TR-19-84 (December 1984).
[14] D. J. Meager, "Efficient Synthetic lmage Generation of Arbitrary 3-0 Oojects" IEEE COnf. Proc. Patt. Recogn. and Image Proc.. pp. 473-478, 1982.
[15] J. G. hgin and T. O. Binford," Computer Description of Curved Oojects," Proc. IJCAI-3, 629-640, 1973.
[16] J. J. Koenderink and A. J. Van Doorn, "Internal Representation of Solid Shape with Respect to Vision," Biological Cybernetics 32. 211-216, 1979.
[17] G. B. Saith and T. M. Strat. "A Knowledge-Based Architecture for Organizing Sensory Data, Proc. of Int. Conf. Intelligent Autonomous Systems, pp. 106-117, Amsterdam, The Netherlands, December 1986.
[18] W. Guber, "The Combinatorial Geonetry Technique for Description and Computer Processing of Complex Three-Dimensional Objects," MEI Project 6915, MR-7004/2 (March 1970).
[19] A. P. Peutland, "Perceptual Organization and the Representation of Metural form," AI Journal. 28(2), DP. 1-33. June 1986.
[20] B. Bhanu. "Representation and Shape Matching of 3-D Dojects," IEEE Transactions on Pattern Analysis and Machine Intelligence, May 1984, PAMI-6(3), 340-351.
[21] B. Bhanu. T. C. Henderson and S. Thomas, "3-D Model Building Using Cago Techniques," Proceedings CYPR, 1985. San Francisco, CA, pp. 234-239.
[22] M. Potmesil, GGenerating Hodels of 3-0 Objects by Matching 3-D Surface Segments, P Proc. 8th WCAI. August 1983. Karls ruhe, West Germany. pp. 1089-1093.
[23] F. P. Ferrie and M. D. Levine, "Piecing Together the 3-D Shape of Moving Oojects: An Overview," Proceedings CVPR, 1985, San Francisco, CA, 574-584.
[24] B. A. Boyter and J. K. Aggarval, "Recognition with Range and Intensity Data," Proc. of the Workshop on Computer Vision: Representation and Control, 1984, Annapolis, Maryland, pp. 112-117.
[25] M. J. Maggee. B. A. Boyter. C. H. Chien and J. K. Aggarwal, Exf..riments in latensity Guided Range Sensing Recognition of Three-Dimensional Oojects." IEEE Trans. on Pattern Analysis and Machine Intelligence, November 1985. PMII-7(6), Pp. 629-637.
[26] B. A. Boyter and J. K. Aggarwal, "Recognition of Polyhedra from Range Data." IEEE Expert, Spring 1986 1(1). pp. 47-59.
[27] B. C. Vemuri and J. K. Aggarmal, -3-D Model Construction from Multiple Views Using Range and Intensity Data." Proc. CYPR, 1986, Miani Beach, Florida. Pp. 435-437.
[28] M. Goldstein, F. G. Pin, 6. de Saussure and C. R. Heisbin, "3-0 Morld Modeling Based on Combinatorial Geometry for Autonomous Robot Mavigation." to be published in Proc. of 1987 IEEE Int. Conf. on Robotics and Autoantion, March 1987.

