380 research outputs found

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Effects of iron-ore mining and processing on metal bioavailability in a tropical coastal lagoon

    Get PDF
    In water systems, water quality and geochemical properties of sediments determine the speciation of trace metals, metal transport, and sediment-water exchange, influencing metal availability and its potential effects on biota. Studies from temperate climates have shown that iron-ore mining and tailing wastewaters, besides being a source of trace metals, usually show high levels of dissolved ions and particulate suspended matter, thus having the potential of indirectly changing metal bioavailability. For the first time in the tropics, we identified the effects of iron-ore mining and processing on metal bioavailability in a coastal lagoon. With an extensive sampling scheme, we investigated the potential sources of metals; the links among metal levels in water, sediments, and invertebrates; and the contrasting effects on metal speciation and bioavailability. The metals Fe, Mn, Al, Cr, Zn, Cu, Ni, Pb, Cd, Hg, and As were measured in water, sediments (surface and profiles), and invertebrates from Mãe-Bá Lagoon and in the sites directly influenced by the mining operations (tailing dams and nearby rivers). In addition, samples from two other lagoons, considered pristine, were analyzed. The study area is located in the southeast of Brazil (Iron Quadrangle Region and a coastal area of Espírito Santo State). General water characteristics included pH, dissolved organic carbon, alkalinity, and anion composition. Water metal speciation was assessed by a speciation model (Chemical Equilibria in Aquatic Systems). Grain-size distribution, organic carbon, carbonate, and acid volatile sulfide (AVS) were determined in sediments. Statistical methods included comparison of means by Mann-Whitney test, ordination and correlation analyses, and analysis of regression for geochemical normalization of metals with grain size. The dissolved metal concentrations, the total metal levels in sediments, and the normalization based on the fine sediment fraction showed that the mining operations constitute potential sources of Fe, Mn, Cr, Cu, Ni, Pb, As, and Hg to Mãe-Bá Lagoon. However, trace metal availability was reduced because of increased pH, hardness, and sulfide content (356 μmol/g) in the sites influenced by the mining. The lagoon showed similar water chemistry as in the mining sites, with metal bioavailability further decreased by the presence of dissolved organic carbon and chloride. Although AVS levels in the lagoon were low (0.48-56 μmol/g), metal bioavailability was reduced because of the presence of organic matter. Metal levels in invertebrates confirmed the predicted low metal bioavailability in Mãe-Bá Lagoon. The lagoon was considered moderately contaminated only by Hg and As. The iron-ore mining and processing studied here constitute potential sources of metal pollution into the tropical lagoon. Contrary to expectations, however, it also contributes to reducing the overall metal bioavailability in the lagoon. These findings are believed to be useful for evaluating metal exposure in a more integrated way, identifying not only the sources of pollution but also how they can affect the components involved in metal speciation and bioavailability in water systems, leading to new insights

    Differential Influence of Clonal Integration on Morphological and Growth Responses to Light in Two Invasive Herbs

    Get PDF
    Background and aims: In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions. Methods: In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85 % shade and their morphological and growth responses were assessed. Key results: The influence of clonal integration on the light reaction norm (connection6light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection6light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mothe

    Dedifferentiation of Foetal CNS Stem Cells to Mesendoderm-Like Cells through an EMT Process

    Get PDF
    Tissue-specific stem cells are considered to have a limited differentiation potential. Recently, this notion was challenged by reports that showed a broader differentiation potential of neural stem cells, in vitro and in vivo, although the molecular mechanisms that regulate plasticity of neural stem cells are unknown. Here, we report that neural stem cells derived from mouse embryonic cortex respond to Lif and serum in vitro and undergo epithelial to mesenchymal transition (EMT)-mediated dedifferentiation process within 48 h, together with transient upregulation of pluripotency markers and, more notably, upregulation of mesendoderm genes, Brachyury (T) and Sox17. These induced putative mesendoderm cells were injected into early gastrulating chick embryos, which revealed that they integrated more efficiently into mesoderm and endoderm lineages compared to non-induced cells. We also found that TGFβ and Jak/Stat pathways are necessary but not sufficient for the induction of mesendodermal phenotype in neural stem cells. These results provide insights into the regulation of plasticity of neural stem cells through EMT. Dissecting the regulatory pathways involved in these processes may help to gain control over cell fate decisions

    The evolutionary signal in metagenome phyletic profiles predicts many gene functions

    Get PDF
    Background. The function of many genes is still not known even in model organisms. An increasing availability of microbiome DNA sequencing data provides an opportunity to infer gene function in a systematic manner. Results. We evaluated if the evolutionary signal contained in metagenome phyletic profiles (MPP) is predictive of a broad array of gene functions. The MPPs are an encoding of environmental DNA sequencing data that consists of relative abundances of gene families across metagenomes. We find that such MPPs can accurately predict 826 Gene Ontology functional categories, while drawing on human gut microbiomes, ocean metagenomes, and DNA sequences from various other engineered and natural environments. Overall, in this task, the MPPs are highly accurate, and moreover they provide coverage for a set of Gene Ontology terms largely complementary to standard phylogenetic profiles, derived from fully sequenced genomes. We also find that metagenomes approximated from taxon relative abundance obtained via 16S rRNA gene sequencing may provide surprisingly useful predictive models. Crucially, the MPPs derived from different types of environments can infer distinct, non-overlapping sets of gene functions and therefore complement each other. Consistently, simulations on > 5000 metagenomes indicate that the amount of data is not in itself critical for maximizing predictive accuracy, while the diversity of sampled environments appears to be the critical factor for obtaining robust models. Conclusions. In past work, metagenomics has provided invaluable insight into ecology of various habitats, into diversity of microbial life and also into human health and disease mechanisms. We propose that environmental DNA sequencing additionally constitutes a useful tool to predict biological roles of genes, yielding inferences out of reach for existing comparative genomics approaches
    corecore