29 research outputs found

    Development of a window correlation matching method for improved radar rainfall estimation

    No full text
    International audienceThe present study develops a method called window correlation matching method (WCMM) to reduce collocation and timing errors in matching pairs of radar measured reflectivity, Ze, and gauge measured rainfall intensity, R, for improving the accuracy of the estimation of Ze?R relationships. This method was compared with the traditional matching method (TMM), the probability matching method (PMM) and the window probability matching method (WPMM). The calibrated relationship Ze=18.05 R1.45 obtained from 7×7 km of space window and both present and 5 min previous time of radar observation for time window (S77T5) produces the best results for radar rainfall estimates for orographic rain over the Mae Chaem Watershed in the north of Thailand. The comparison shows that the Ze?R relationship obtained from WCMM provide more accuracy in radar rainfall estimates as compared with the other three methods. The Ze?R relationships estimated using TMM and PMM provide large overestimation and underestimation, respectively, of mean areal rainfall whereas WPMM slightly underestimated the mean areal rainfall. Based on the overall results, it can be concluded that WCMM can reduce collocation and timing errors in Ze?R pairs matching and improve the estimation of Ze?R relationships for radar rainfall. WCMM is therefore a promising method for improved radar-measured rainfall, which is an important input for hydrological and environmental modeling and water resources management

    Enhancement of MRC Modelling Tools in the 3S Basin to Improve Transboundary River Basin Management

    Get PDF

    The current and future impact of water resources development on flows and livelhoods of the Mekong River

    Get PDF

    Modelling the Impact of Large Dams on Flows and Hydropower Production of the Sekong, Sesan, and Srepok Rivers in the Mekong Basin

    Get PDF

    Assessment of flow changes from hydropower development and operations in Sekong, Sesan and Srepok Rivers of the Mekong Basin

    Get PDF
    The Mekong River supports unique biodiversity and provides food security for over sixty million people in the Indo-Burma region, but potential changes to natural flow patterns from hydropower development are a major risk to the wellbeing of this system. Of particular concern is the ongoing and future development of 42 dams in the transboundary Srepok, Sesan and Sekong (3S) Basin which contributes up to 20% of the Mekong's annual flows and provides critical ecosystem services to the downstream Tonle Sap Lake and the Mekong Delta. To assess the magnitude of potential changes, daily flows were simulated over 20 years using the HEC ResSim and SWAT models for a range of dam operations and development scenarios. A 63% increase in dry season flows and a 22% decrease in wet season flows at the outlet of the 3S Basin can result from the potential development of new dams in the main 3S Rivers under an operation scheme to maximize electricity production. Water level changes in the Mekong River from this scenario are comparable to changes induced by the current development of Chinese dams in the Upper Mekong Basin and are significantly higher than potential flow changes from the proposed 11 mainstream dams in the Lower Mekong Basin. Dams on the upper sub tributaries of the 3S Basin have very low impacts on seasonal flow regimes because most of those projects are run-of-river dams and have small reservoir storages. Impacts on hourly flow changes due to intra daily reservoir operations, sediment movement, water quality and ecology need further study. Strategic site selection and coordinated reservoir operations between countries are necessary to achieve an acceptable level of development in the basin and mitigate negative impacts to seasonal flow patterns which sustain downstream ecosystem productivity and livelihoods

    Effect of Proposed Large Dams on Water Flows and Hydropower Production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin

    Get PDF
    Water flow patterns in the Mekong are changing due to on-going rapid hydropower development triggered by economic growth. Of immediate concern are the current and proposed hydropower dams in the transboundary Srepok, Sesan and Srekong (3S) Rivers, which contribute up to 20% of the Mekong’s annual flows, have a large potential for energy production, and provide critical ecosystem services to the downstream Tonle Sap Lake and Mekong Delta. The objective of this paper is to determine how the operation of the proposed largest individual dams and cascade dams schemes in the 3S Rivers will affect flow regimes and energy production. Daily flows were simulated over 20 years using the SWAT and HECResSim models for a range of dam development and operations scenarios. The development of all dams in the 3S basin under an operation scheme to maximize individual electricity production results in an average 98% increase in dry season flows at the 3S outlet. Over 55% of dry season flows changes are caused by seven proposed large dams, with the Lower Srepok 3 project causing the highest impact. The seven large dams will generate 33.0 GWh/day with a water volume of 17,679 million m3 , compared to the current and definite future dams generating 73.2 GWh/day with a much lower volume of 6,616 million m3 . When a cascade of dams are operational, downstream dams with small reservoirs will produce more energy. However, the marginal increase in energy production from the development of additional dams in the 3S basin will decline rapidly relative to the required water storage increase,. Strategic decision making on the future of each large proposed dam in the 3S basin needs to be considered by local governments after understanding cumulative operation effects and with further consideration to the potential impact on downstream ecosystem productivity and livelihoods

    Historical impact of water infrastructure on water levels of the Mekong River and the Tonle Sap system

    No full text
    The rapid rate of water infrastructure development in the Mekong Basin is a cause for concern due to its potential impact on fisheries and downstream natural ecosystems. In this paper, we analyze the historical water levels of the Mekong River and Tonle Sap system by comparing pre- and post-1991 daily observations from six stations along the Mekong mainstream from Chiang Saen (northern Thailand), to Stung Treng (Cambodia), and the Prek Kdam station on the Tonle Sap River. Observed alterations in water level patterns along the Mekong are linked to temporal and spatial trends in water infrastructure development from 1960 to 2010. We argue that variations in historical climatic factors are important, but they are not the main cause of observed changes in key hydrological indicators related to ecosystem productivity. Our analysis shows that the development of mainstream dams in the upper Mekong Basin in the post-1991 period may have resulted in a modest increase of 30-day minimum levels (+17%), but significant increases in fall rates (+42%) and the number of water level fluctuations (+75%) observed in Chiang Saen. This effect diminishes downstream until it becomes negligible at Mukdahan (northeast Thailand), which represents a drainage area of over 50% of the total Mekong Basin. Further downstream at Pakse (southern Laos), alterations to the number of fluctuations and rise rate became strongly significant after 1991. The observed alterations slowly decrease downstream, but modified rise rates, fall rates, and dry season water levels were still quantifiable and significant as far as Prek Kdam. This paper provides the first set of evidence of hydrological alterations in the Mekong beyond the Chinese dam cascade in the upper Mekong. Given the evident alterations at Pakse and downstream, post-1991 changes could also be directly attributed to water infrastructure development in the Chi and Mun basins of Thailand. A reduction of 23 and 11% in the water raising and falling rates respectively at Prek Kdam provides evidence of a diminished Tonle Sap flood pulse in the post-1991 period. Given the observed water level alterations from 1991 to 2010 as a result of water infrastructure development, we can extrapolate that future development in the mainstream and the key transboundary Srepok, Sesan, and Sekong sub-basins will have an even greater effect on the Tonle Sap flood regime, the lower Mekong floodplain, and the delta

    Hydropower dams of the Mekong river basin: a review of their hydrological impacts

    No full text
    Hydropower production is altering the Mekong River basin’s riverine ecosystems, which contain the world’s largest inland fishery and provide food security and livelihoods to millions of people. The basin’s hydropower reservoir storage, which may rise from ~2% of its mean annual flow in 2008 to ~20% in 2025, is attenuating seasonal flow variability downstream of many dams with integral powerhouses and large storage reservoirs. In addition, tributary diversions for off-stream energy production are reducing downstream flows and augmenting them in recipient tributaries. To help manage tradeoffs between dam benefits (hydropower, irrigation, flood control, domestic water supply, and navigation) and their consequences for livelihoods and ecosystems, we review observed and projected impacts on river flows along both the Mekong mainstream and its tributaries. We include the effects of diversions and inter-basin transfers, which prior reviews of flow alteration in the Mekong basin have largely neglected. We also discuss the extent to which concurrent changes in climate, water demand, and land use, may offset or exacerbate hydropower-induced flow alteration. Our major recommendations for assessing hydrological impacts in the Mekong and other basins undergoing rapid hydropower development include synchronizing and integrating observational and modeling studies, improving the accuracy of reservoir water balances, evaluating multi-objective reservoir operating rules, examining hydropeaking-induced flow alteration, conducting multi-dam safety assessments, evaluating flow indicators relevant to local ecosystems and livelihoods, and considering alternative energy sources and reservoir sedimentation in long-term projections. Finally, we strongly recommend that dam impact studies consider hydrological alteration in conjunction with fish passage barriers, geomorphic changes and other contemporaneous stressors

    Assessing Climate Change Impacts on River Flows in the Tonle Sap Lake Basin, Cambodia

    No full text
    The Tonle Sap is the most fertile and diverse freshwater ecosystem in Southeast Asia, receiving nurturing water flows from the Mekong and its immediate basin. In addition to rapid development in the Tonle Sap basin, climate change may threaten natural flow patterns that sustain its diversity. The impacts of climate change on river flows in 11 sub-basins contributing to the Tonle Sap Lake were assessed using the Soil and Water Assessment Tool (SWAT) model to quantify the potential magnitude of future hydrological alterations. Projected river flows from three General Circulation Models (GFDL-CM3, GISS-E2-R-CC and IPSL-CM5A-MR) for three time horizons (2030s, 2060s and 2090s) indicate a likely decrease in both the wet and dry season flows. The mean annual projected flow reductions range from 9 to 29%, 10 to 35% and 7 to 41% for the 2030s, 2060s and 2090s projections, respectively. Moreover, a decrease in extreme river flows (Q5 and Q95) was also found, which implies there could be a decline in flood magnitudes and an increase in drought occurrences throughout the basin. The results of this study provide insight for water resources planning and adaptation strategies for the river ecosystems during the dry season, when water flows are projected to decrease

    Critical Basin at Risk: Assessing and managing ecosystem pressures from development and climate change in the 3S basin

    Get PDF
    corecore