35 research outputs found

    Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations

    Get PDF
    Portland based cement is one of the most popular materials used in the civil and construction applications. Reliable computational methods to provide an insight into the underlying mechanics of the major phases of this material are of great interest for cement design. The present work investigated the performance of density functional theory (DFT) calculations using the PBE-D2 method to predict the mechanical, thermodynamic properties of four major phases namely Alite C3S, Belite C2S, tricalcium aluminate C3A and tetracalcium aluminoferrite C4AF. The calculated elastic properties were in a good agreement with available experimental data. In addition, a deeper insight into the electron density of state, spin-polarization, atomic charge, as well as free energy and entropy properties were also presented. Further development is necessary to improve the established DFT models for predicting the mechanical properties of the ferrite phase of Portland clinker.publishedVersio

    Comparing amine- and ammonium functionalized silsesquioxanes for large scale synthesis of hybrid polyimide high-temperature gas separation membranes

    Get PDF
    PolyPOSS-imide membranes are promising for separating H2 from larger molecules (CO2, N2, CH4) at temperatures up to 300 °C. Their fabrication involves two steps: interfacial polymerization of POSS and 6FDA, followed by thermal imidization. This work provides a systematic study of the effects of cations on membrane properties and performance. For this, two distinct POSS molecules were used: functionalized with -NH3+Cl− or, so far unexplored, -NH2. The ammonium groups are partially deprotonated by using three different bases, LiOH, NaOH, and KOH. We demonstrate that the introduced cations affect the film thickness but not the molecular composition of the polyamic acid. All polyamic acids can be imidized, but the cations reduce the imidization kinetics as well as the loss of organic crosslinkers. For flat disc membranes, at 200 °C, the absence of cations results in comparable permeability combined with higher selectivity for H2/N2. This, and the possibility to discard adding a base, motivated a scale-up study of the new POSS. For tubular membranes, much higher ideal and mixed gas selectivities are found than for membranes where NaOH was added. Results indicate that the new route allows more reproducible production of defect free membranes and has potential for larger-scale polyPOSSimide fabrication.publishedVersio

    Stability investigation of polyPOSS-imide membranes for H2 purification and their application in the steel industry

    Get PDF
    In the present work, the high-temperature and long-term hydrothermal stability of novel polyPOSS-imide membranes for high-temperature hydrogen separation is investigated. The polyPOSS-imide membranes are found to exhibit an appropriate stability up to 300 C. Above this temperature the membrane selectivity rapidly decreases, which is seemingly related to changes in the molecular structure coupled to silanol condensation forming siloxane groups. Surprisingly, the exposure of the membrane to temperatures of up to 300 C even increases the H2 permeance together with the selective feature of the polyPOSS-imide layer. Subsequently, the long-term hydrothermal stability of the polyPOSS-imide membranes was investigated over a period of close to 1000 h at 250 C exposing the membrane to 10 mol% steam in the feed. An increase in H2/CH4 selectivity was observed upon water addition, and even though a minor drop was noticed over time during the hydrothermal operation, the selectivity exceeds the initial selectivity obtained in the dry feed atmosphere. After the removal of steam from the feed, the performance returns to its original state prior to the exposure to any steam showing appropriate steam stability of the polyPOSS-imide membranes. A conceptual process design and assessment was performed for application of these membranes involving a combination of carbon reuse and electrification of the steel making process with co-production of hydrogen. The results indicate a CO2 avoidance of 14%. The CO2 reduction achieved using renewable electricity in the proposed scheme is a factor 2.76 higher compared to a situation where the same renewable electricity would be fed in the electricity grid.publishedVersio

    Anti-CD3 antibody treatment reduces scar formation in a rat model of myocardial infarction

    Get PDF
    Introduction: Antibody treatment with anti-thymocyte globulin (ATG) has been shown to be cardioprotective. We aimed to evaluate which single anti-T-cell epitope antibody alters chemokine expression at a level similar to ATG and identified CD3, which is a T-cell co-receptor mediating T-cell activation. Based on these results, the effects of anti-CD3 antibody treatment on angiogenesis and cardioprotection were tested in vitro and in vivo. Methods: Concentrations of IL-8 and MCP-1 in supernatants of human peripheral blood mononuclear cell (PBMC) cultures following distinct antibody treatments were evaluated by Enzyme-linked Immunosorbent Assay (ELISA). In vivo, anti-CD3 antibodies or vehicle were injected intravenously in rats subjected to acute myocardial infarction (AMI). Chemotaxis and angiogenesis were evaluated using tube and migration assays. Intracellular pathways were assessed using Western blot. Extracellular vesicles (EVs) were quantitatively evaluated using fluorescence-activated cell scanning, exoELISA, and nanoparticle tracking analysis. Also, microRNA profiles were determined by next-generation sequencing. Results: Only PBMC stimulation with anti-CD3 antibody led to IL-8 and MCP-1 changes in secretion, similar to ATG. In a rat model of AMI, systemic treatment with an anti-CD3 antibody markedly reduced infarct scar size (27.8% (Inter-quartile range; IQR 16.2–34.9) vs. 12.6% (IQR 8.3–27.2); p < 0.01). The secretomes of anti-CD3 treated PBMC neither induced cardioprotective pathways in cardiomyocytes nor pro-angiogenic mechanisms in human umbilical vein endothelial cell (HUVECs) in vitro. While EVs quantities remained unchanged, PBMC incubation with an anti-CD3 antibody led to alterations in EVs miRNA expression. Conclusion: Treatment with an anti-CD3 antibody led to decreased scar size in a rat model of AMI. Whereas cardioprotective and pro-angiogenetic pathways were unaltered by anti-CD3 treatment, qualitative changes in the EVs miRNA expression could be observed, which might be causal for the observed cardioprotective phenotype. We provide evidence that EVs are a potential cardioprotective treatment target. Our findings will also provide the basis for a more detailed analysis of putatively relevant miRNA candidates

    Simulation of degradation phenomena on model enamels with historical compositions

    Get PDF
    Enamels from arts and crafts objects of the Renaissance and Baroque period in Europe show an increasing and irreversible degradation caused by microclimatic environmental influences. In the present study typical degradation phenomena were simulated and the mechanisms of degradation were described. Model enamels on copper Substrates were produced and exposed to accelerated weathering in a climate Chamber. The enamel compositions were selected according to the analysis of Originals. The main part of the work was involved with the investigation of parameters influencing the corrosion of the objects like the effect of pollutants and changes of temperature and humidity. Besides, the influence of mechanical stresses in the enamel layer and the effect of a mechanical pre-damaging were parts of the working programme. The progress of the degradation process was followed by light microscopy and infrared reflectance spectroscopy. The investigations were completed by an assessment of the distribution of the stress in the enamel layer and the metal Substrate

    Self-protection concrete measures as prevention measure from chloride transport and corrosion of reinforcement

    No full text
    Incorporation of additives into a reinforced concrete matrix to delay or even completely avoid the initiation of corrosion during the service-life of the construction is a widely pursued topic. One of the new promising technologies achieving increased interest is to incorporate corrosion inhibitors encapsulated in layered double hydroxide (LDH). LDH structures follow a controlled release of the inhibitor while chloride is efficiently trapped at the same time. Another type of nanostructure additive offering self-protection ability in concrete is polyhedral oligomeric silsesquioxanes (POSS) developed to exhibit water-repellent functionalities protecting the reinforcement from corrosive attack. In the present laboratory work, the enhanced performance of concrete infrastructures in a marine environment was studied using a SCC design. The addition of LDH (0.5, 1 and 2 % by mass of binder (bmb)) and POSS (2 and 4 % additive level) was explored. Migration and diffusion Cl transport tests have been performed towards corrosion protection of reinforcing bars. The results showed that Cl transport decreases with the concrete maturity, and this is even more effective for concretes with LDH and POSS. This delay effect is more pronounced in the unidirectional diffusional Cl transport. LDH is significantly retarding the initiation of rebar corrosion

    Identifying the meta, para and ortho isomers in octa(aminophenyl)silsesquioxane (OAPS) from joint experimental characterizations and theoretical predictions of the IR and NMR spectra

    Get PDF
    International audiencePolyhedral oligomeric silsesquioxane (POSS) compounds are defined by the chemical formula (RSiO3/2)8 with R being an organic fragment. They display versatile features due to the combination of both their stable Si-O-Si inorganic cores and the large number of possible organic groups that can be attached to them. The present work aims at characterizing a highly-thermoresistant POSS, the octa(aminophenyl)silsesquioxane (OAPS). This siloxane-based cage has three different isomers depending on the meta, ortho and para positions of the amines with respect to the phenyl groups and can be obtained using two synthesis routes. However, the presence of the isomers depends on the synthesis route and remains up to now an open question.Experimental characterizations including pycnometry, infrared spectroscopy (IR), 1-dimensional and 2-dimensional nuclear magnetic resonance (NMR) have been performed for a commercial OAPS containing all three isomers and a controlled OAPS containing only the para and meta isomers. The density is found to be insensitive to the nature of the isomers, unlike the IR, 13C NMR and 1H NMR spectra that are isomer-dependent. To better identify the isomers, the experimental IR and NMR spectra were compared to predictions from Density Functional Theory (DFT) quantum mechanical methods and by machine-learning analyses. Within this context, quantum mechanical methods were found to be clearly superior to machine-learning methods, despite being computationally much more expensive. As a result, several peaks in the IR spectra and each peak in both the 13C NMR and 1H NMR spectra could be assigned to a specific OAPS isomer

    Elastic and thermodynamic properties of the major clinker phases of Portland cement: Insights from first principles calculations

    No full text
    Portland based cement is one of the most popular materials used in the civil and construction applications. Reliable computational methods to provide an insight into the underlying mechanics of the major phases of this material are of great interest for cement design. The present work investigated the performance of density functional theory (DFT) calculations using the PBE-D2 method to predict the mechanical, thermodynamic properties of four major phases namely Alite C3S, Belite C2S, tricalcium aluminate C3A and tetracalcium aluminoferrite C4AF. The calculated elastic properties were in a good agreement with available experimental data. In addition, a deeper insight into the electron density of state, spin-polarization, atomic charge, as well as free energy and entropy properties were also presented. Further development is necessary to improve the established DFT models for predicting the mechanical properties of the ferrite phase of Portland clinker
    corecore