219 research outputs found

    Dynamische Hüftschraube

    Get PDF

    Type II Bi 1- x W x O 1.5 + 1.5 x : a (3 + 3)-dimensional commensurate modulation that stabilizes the fast- ion conducting delta phase of bismuth oxide

    Get PDF
    The Type II phase in the Bi1 xWxO1.5 + 1.5x system is shown to have a (3 + 3)- dimensional modulated -Bi2O3-related structure, in which the modulation vector " ‘locks in’ to a commensurate value of 1/3. The structure was refined in a 3 3 3 supercell against single-crystal Laue neutron diffraction data. Ab initio calculations were used to test and optimize the local structure of the oxygen sublattice around a single mixed Bi/W site. The underlying crystal chemistry was shown to be essentially the same as for the recently refined (3 + 3)-dimensional modulated structure of Type II Bi1 xNbxO1.5 + x (Ling et al., 2013), based on a transition from fluorite-type to pyrochlore-type via the appearance of W4O18 ‘tetrahedra of octahedra’ and chains of corner-sharing WO6 octahedra along h110iF directions. The full range of occupancies on this mixed Bi/W site give a hypothetical solid-solution range bounded by Bi23W4O46.5 (x = 0.148) and Bi22W5O48 (x = 0.185), consistent with previous reports and with our own synthetic and analytical results

    Incorporation of tetrahedral ferric iron in hydrous ringwoodite

    Get PDF
    Hydrous Fo_{91} ringwoodite crystals were synthesized at 20 GPa and high-temperature conditions using a multi-anvil press. Recovered crystals were analyzed using electron microprobe analysis, Raman spectroscopy, infrared spectroscopy, synchrotron Mössbauer spectroscopy, single-crystal X-ray diffraction, and single-crystal Laue neutron diffraction, to carefully characterize the chemistry and crystallography of the samples. Analysis of the combined data sets provides evidence for the presence of tetrahedrally coordinated ferric iron and multiple hydrogen incorporation mechanisms within these blue-colored iron-bearing ringwoodite crystals. Tetrahedral ferric iron is coupled with cation disorder of silicon onto the octahedrally coordinated site. Cation disorder in mantle ringwoodite minerals may be promoted in the presence of water, which could have implications for current models of seismic velocities within the transition zone. Additionally, the presence of tetrahedrally coordinated ferric iron may cause the blue color of many ringwoodite and other high-pressure crystals

    Knockout of the epilepsy gene Depdc5 in mice causes severe embryonic dysmorphology with hyperactivity of mTORC1 signalling

    Get PDF
    Published online: 03 October 2017DEPDC5 mutations have recently been shown to cause epilepsy in humans. Evidence from in vitro studies has implicated DEPDC5 as a negative regulator of mTORC1 during amino acid insufficiency as part of the GATOR1 complex. To investigate the role of DEPDC5 in vivo we generated a null mouse model using targeted CRISPR mutagenesis. Depdc5 homozygotes display severe phenotypic defects between 12.5-15.5 dpc, including hypotrophy, anaemia, oedema, and cranial dysmorphology as well as blood and lymphatic vascular defects. mTORC1 hyperactivity was observed in the brain of knockout embryos and in fibroblasts and neurospheres isolated from knockout embryos and cultured in nutrient deprived conditions. Heterozygous mice appeared to be normal and we found no evidence of increased susceptibility to seizures or tumorigenesis. Together, these data support mTORC1 hyperactivation as the likely pathogenic mechanism that underpins DEPDC5 loss of function in humans and highlights the potential utility of mTORC1 inhibitors in the treatment of DEPDC5-associated epilepsy.James Hughes, Ruby Dawson, Melinda Tea, Dale McAninch, Sandra Piltz, Dominique Jackson, Laura Stewart, Michael G. Ricos, Leanne M. Dibbens, Natasha L. Harvey and Paul Thoma

    Functional screening of GATOR1 complex variants reveals a role for mTORC1 deregulation in FCD and focal epilepsy

    Get PDF
    Mutations in the GAP activity toward RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2 and NPRL3) have been associated with focal epilepsy and focal cortical dysplasia (FCD). GATOR1 functions as an inhibitor of the mTORC1 signalling pathway, indicating that the downstream effects of mTORC1 deregulation underpin the disease. However, the vast majority of putative disease-causing variants have not been functionally assessed for mTORC1 repression activity. Here, we develop a novel in vitro functional assay that enables rapid assessment of GATOR1-gene variants. Surprisingly, of the 17 variants tested, we show that only six showed significantly impaired mTORC1 inhibition. To further investigate variant function in vivo, we generated a conditional Depdc5 mouse which modelled a 'second-hit' mechanism of disease. Generation of Depdc5 null 'clones' in the embryonic brain resulted in mTORC1 hyperactivity and modelled epilepsy and FCD symptoms including large dysmorphic neurons, defective migration and lower seizure thresholds. Using this model, we validated DEPDC5 variant F164del to be loss-of-function. We also show that Q542P is not functionally compromised in vivo, consistent with our in vitro findings. Overall, our data show that mTORC1 deregulation is the central pathological mechanism for GATOR1 variants and also indicates that a significant proportion of putative disease variants are pathologically inert, highlighting the importance of GATOR1 variant functional assessment.Ruby E. Dawson, Alvaro F. Nieto Guil, Louise J.Robertson, Sandra G.Piltz, James N.Hughes, Paul Q.Thoma

    Interpretation of uniocular and binocular trials of glaucoma medications: an observational case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To predict the effectiveness of topical glaucoma medications based on initial uniocular and binocular treatment. To test a traditional hypothesis that effectiveness following a uniocular trial is associated with the change in IOP in the initially treated eye minus the change in the initially untreated eye. To determine whether uniocular or binocular treatment trials are superior.</p> <p>Methods</p> <p>Based on a review of medical records, we identified 168 instances in 154 patients with bilateral primary open angle glaucoma of initial uniocular use of a topical glaucoma medication with well-documented intraocular pressure (IOP) readings at baseline (IOP<sub>A</sub>), during the trial (IOP<sub>B</sub>), and at follow-up (IOP<sub>C</sub>). Abstracted data included demographic data, IOP, and medication use. Predictors of the IOP following the trial (IOP<sub>C</sub>) in each eye were identified by multivariable linear regression. In 70 cases, the predictive ability of initial uniocular and binocular treatment could be directly compared.</p> <p>Results</p> <p>In a multivariable analysis, the follow-up pressure in the initially treated eye (IOP<sub>1C</sub>) was directly correlated with treated eye IOP during initial uniocular use (IOP<sub>1B</sub>, p < 0.001). In a multivariable analysis, the follow-up pressure in the initially untreated eye (IOP<sub>2C</sub>) was directly correlated with its baseline IOP<sub>2A </sub>(p < 0.001), and also tended to be associated with treated IOP<sub>1B </sub>(p = 0.07). The multivariable regression coefficient (b) for the IOP change in the initially untreated eye was generally not close to the value of -1 expected by the classic teaching (for eye 1, b = 0.04, p = 0.35; for eye 2, b = 0.07, p = 0.50). In 70 cases, the uniocular and binocular trials predicted a similar fraction of the variance in follow-up IOP<sub>1C </sub>(r<sup>2 </sup>= 0.56 and 0.57, respectively) and IOP<sub>2C </sub>(r<sup>2 </sup>= 0.39 and 0.38, respectively).</p> <p>Conclusion</p> <p>1) For uniocular trials, the IOP change in the untreated eye should not be subtracted from that in the treated eye. 2) Uniocular and binocular trials have similar predictive value when interpreted correctly. Either may be selected based on clinical circumstances.</p

    Torsional stability of interference screws derived from bovine bone - a biomechanical study

    Get PDF
    Introduction: It has been proposed that individual genetic variation contributes to the course of severe infections and sepsis. Recent studies of single nucleotide polymorphisms (SNPs) within the endotoxin receptor and its signaling system showed an association with the risk of disease development. This study aims to examine the response associated with genetic variations of TLR4, the receptor for bacterial LPS, and a central intracellular signal transducer (TIRAP/Mal) on cytokine release and for susceptibility and course of severe hospital acquired infections in distinct patient populations. Methods: Three intensive care units in tertiary care university hospitals in Greece and Germany participated. 375 and 415 postoperative patients and 159 patients with ventilator associated pneumonia (VAP) were included. TLR4 and TIRAP/Mal polymorphisms in 375 general surgical patients were associated with risk of infection, clinical course and outcome. In two prospective studies, 415 patients following cardiac surgery and 159 patients with newly diagnosed VAP predominantly caused by Gram-negative bacteria were studied for cytokine levels in-vivo and after ex-vivo monocyte stimulation and clinical course. Results: Patients simultaneously carrying polymorphisms in TIRAP/Mal and TLR4 and patients homozygous for the TIRAP/Mal SNP had a significantly higher risk of severe infections after surgery (odds ratio (OR) 5.5; confidence interval (CI): 1.34 - 22.64; P = 0.02 and OR: 7.3; CI: 1.89 - 28.50; P < 0.01 respectively). Additionally we found significantly lower circulating cytokine levels in double-mutant individuals with ventilator associated pneumonia and reduced cytokine production in an ex-vivo monocyte stimulation assay, but this difference was not apparent in TIRAP/Mal-homozygous patients. In cardiac surgery patients without infection, the cytokine release profiles were not changed when comparing different genotypes. Conclusions: Carriers of mutations in sequential components of the TLR signaling system may have an increased risk for severe infections. Patients with this genotype showed a decrease in cytokine release when infected which was not apparent in patients with sterile inflammation following cardiac surgery

    Deep sequencing analysis of the developing mouse brain reveals a novel microRNA

    Get PDF
    Extent: 15p.Background: MicroRNAs (miRNAs) are small non-coding RNAs that can exert multilevel inhibition/repression at a post-transcriptional or protein synthesis level during disease or development. Characterisation of miRNAs in adult mammalian brains by deep sequencing has been reported previously. However, to date, no small RNA profiling of the developing brain has been undertaken using this method. We have performed deep sequencing and small RNA analysis of a developing (E15.5) mouse brain. Results: We identified the expression of 294 known miRNAs in the E15.5 developing mouse brain, which were mostly represented by let-7 family and other brain-specific miRNAs such as miR-9 and miR-124. We also discovered 4 putative 22-23 nt miRNAs: mm_br_e15_1181, mm_br_e15_279920, mm_br_e15_96719 and mm_br_e15_294354 each with a 70-76 nt predicted pre-miRNA. We validated the 4 putative miRNAs and further characterised one of them, mm_br_e15_1181, throughout embryogenesis. Mm_br_e15_1181 biogenesis was Dicer1-dependent and was expressed in E3.5 blastocysts and E7 whole embryos. Embryo-wide expression patterns were observed at E9.5 and E11.5 followed by a near complete loss of expression by E13.5, with expression restricted to a specialised layer of cells within the developing and early postnatal brain. Mm_br_e15_1181 was upregulated during neurodifferentiation of P19 teratocarcinoma cells. This novel miRNA has been identified as miR-3099. Conclusions: We have generated and analysed the first deep sequencing dataset of small RNA sequences of the developing mouse brain. The analysis revealed a novel miRNA, miR-3099, with potential regulatory effects on early embryogenesis, and involvement in neuronal cell differentiation/function in the brain during late embryonic and early neonatal development.King-Hwa Ling, Peter J Brautigan, Christopher N Hahn, Tasman Daish, John R Rayner, Pike-See Cheah, Joy M Raison, Sandra Piltz Jeffrey R Mann, Deidre M Mattiske, Paul Q Thomas, David L Adelson and Hamish S Scot

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF
    corecore