38 research outputs found

    Timing of nitrogen application on common bean cultivated after single corn or intercropped with palisade grass

    Get PDF
    O objetivo deste trabalho foi avaliar a resposta do feijoeiro a épocas de aplicação de N, em sistema plantio direto, após cultivo de milho solteiro ou consorciado com braquiária. O delineamento experimental utilizado foi em blocos ao acaso, com arranjo de parcelas subdivididas e quatro repetições. As parcelas consistiram de: cultivo de milho solteiro ou milho consorciado com braquiária, nas duas safras de verão precedentes à semeadura do feijão. As subparcelas consistiram de: três épocas de aplicação de 100 kg ha-1 de N, antes e na semeadura, e em cobertura; e uma testemunha, sem aplicação de N. A adubação nitrogenada do feijoeiro aumentou o teor de N na folha, o número de vagens por planta e a produtividade de grãos (33%, na média das épocas de aplicação), apenas no cultivo em sucessão ao milho solteiro. Por proporcionar maior produção de massa e pela ciclagem de N, o cultivo de braquiária consorciada com milho reduziu a necessidade de aplicação de N ao feijoeiro em sucessão, em comparação ao cultivo anterior de milho solteiro. A aplicação antecipada do N, antes ou por ocasião da semeadura do feijão, proporciona produtividade de grãos semelhante à observada com a aplicação em cobertura.The objective of this work was to evaluate the common bean response to N application timing, under no‑tillage system, after single corn or intercropped with palisade grass. A randomized complete block experimental design was used in a split‑plot arrangement, with four replicates. Plots consisted of: single corn crop or corn intercropped with palisade grass, in two summer cropping seasons precedent to common bean sowing. Subplots consisted of: 100 kg ha-1 N application in three times – before sowing, at sowing, and at side‑dressing – and a control treatment without N application. Nitrogen fertilization on common bean increased leaf‑N content, the number of pods per plant, and grain yield (33% in the average application timing), only in the cropping after single corn. By providing large mass production and by N cycling, the cultivation of palisade grass intercropped with corn reduced N requirement of common bean in succession, in comparison to previous sole corn cultivation. Early N application before or during common bean sowing time provides grain yield similar to the observed one in the side‑dressing application

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species

    Expanding tropical forest monitoring into Dry Forests: The DRYFLOR protocol for permanent plots

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordSocietal Impact Statement Understanding of tropical forests has been revolutionized by monitoring in permanent plots. Data from global plot networks have transformed our knowledge of forests’ diversity, function, contribution to global biogeochemical cycles, and sensitivity to climate change. Monitoring has thus far been concentrated in rain forests. Despite increasing appreciation of their threatened status, biodiversity, and importance to the global carbon cycle, monitoring in tropical dry forests is still in its infancy. We provide a protocol for permanent monitoring plots in tropical dry forests. Expanding monitoring into dry biomes is critical for overcoming the linked challenges of climate change, land use change, and the biodiversity crisis.Newton FundNatural Environment Research Council (NERC)Fundação de Amparo à Pesquisa do Estado de São PauloCYTE

    Inter-Species Complementation of the Translocon Beta Subunit Requires Only Its Transmembrane Domain

    Get PDF
    In eukaryotes, proteins enter the secretory pathway through the translocon pore of the endoplasmic reticulum. This protein translocation channel is composed of three major subunits, called Sec61α, β and γ in mammals. Unlike the other subunits, the β subunit is dispensable for translocation and cell viability in all organisms studied. Intriguingly, the knockout of the Sec61β encoding genes results in different phenotypes in different species. Nevertheless, the β subunit shows a high level of sequence homology across species, suggesting the conservation of a biological function that remains ill-defined. To address its cellular roles, we characterized the homolog of Sec61β in the fission yeast Schizosaccharomyces pombe (Sbh1p). Here, we show that the knockout of sbh1+ results in severe cold sensitivity, increased sensitivity to cell-wall stress, and reduced protein secretion at 23°C. Sec61β homologs from Saccharomyces cerevisiae and human complement the knockout of sbh1+ in S. pombe. As in S. cerevisiae, the transmembrane domain (TMD) of S. pombe Sec61β is sufficient to complement the phenotypes resulting from the knockout of the entire encoding gene. Remarkably, the TMD of Sec61β from S. cerevisiae and human also complement the gene knockouts in both yeasts. Together, these observations indicate that the TMD of Sec61β exerts a cellular function that is conserved across species

    Les récepteurs muscariniques peuvent-ils être considérés comme facteur clé dans le développement de nouvelles stratégies de lutte contre les insectes vecteurs de maladies ?

    No full text
    Vector-borne diseases are caused by pathogen transmission from one host to another by insects. The main way to prevent those diseases is vector control. Chemical pesticides such as insecticides have been used successfully in controlling several pest insects. However, their widespread uses during several decades have led to the emergence of resistance. Moreover, institutional policies tend to be more and more restrictive to the use of insecticides. It is then necessary to develop new strategies to control the insects responsible for these diseases. Previous studies, on the cockroaches Periplaneta americana, shown that intracellular calcium increase via muscarinic receptors (mAChRs) activation leads to increase the sensitivity of the neuronal target to insecticide. In this work, the study of mAChRsfrom Anopheles gambiae, the main vector of malaria, was performed. Three types of mAChRs have been found and named mAChR-A, mAChR-B (two variants mAChR-B1 and mAChR-B2) and mAChR-C. Using calcium imaging technique, the functional and pharmacological characterisation of mAChR-A expressed in a heterologous system, the Sf9 cells, was performed. After co-expression of mAChR-A and An. gambiae acetylcholinesterase 1 (AChE1) in Sf9 cells, we shown that mAChR-A activation modulates AChE1 sensitivity to an organophosphate insecticide, the chlorpyrifos-ethyl. Taken together, these results suggest that mAChRs can be considered as important factors in the development of new strategies for controlling pest insectsLes maladies vectorielles sont causées par des agents pathogènes transmis d’un hôte à un autre par un insecte vecteur. Le moyen de lutte le plus efficace contre ces maladies reste à l’heure actuelle l’utilisation de produits phytosanitaires comme les insecticides. Cependant, l’utilisation non raisonnée des insecticides au cours des dernières décennies a conduit à l’apparition de populations d’insectes résistants entrainant une diminution de l’efficacité des traitements insecticides. De plus, les politiques institutionnelles tendent vers une diminution du nombre de substances disponibles. Il devient donc nécessaire de mettre en place de nouvelles stratégies de lutte contre les insectes vecteurs de maladies. Des études chez la blatte Periplaneta americana ont montré que l’activation des récepteurs muscariniques (mAChRs) entrainait l’augmentation du calcium intracellulaire. Cette augmentation de calcium permet d’accroître la sensibilité des cibles aux insecticides. Ainsi, lesmAChRs pourraient jouer un rôle dans les nouvelles stratégies de lutte contre les insectes nuisibles. Nous avons donc entrepris de caractériser les mAChRs chez le moustique Anopheles gambiae, vecteur du paludisme. Trois types de mAChRs ont été mis en évidence : le mAChR-A, deux variants du mAChR-B (mAChR-B1 et mAChR-B2) et le mAChR-C. L’expression du mAChR-A dans un système hétérologue, les cellules Sf9, a permis sa caractérisation fonctionnelle et pharmacologique. Des tests de mesure de l’activité de l’acétylcholinestérase 1 (AChE1) d’An. gambiae dans les cellules Sf9 ont montré que l’activation du mAChR-A module la sensibilité de l’AChE1 au chlorpyrifos-éthyl, un insecticide organophosphoré. L’ensemble des résultats suggère que les mAChRs peuvent être considérés comme des facteurs importants dans le développement de nouvelles stratégies de lutte contre les insectes vecteurs de maladi

    Can muscarinic receptors be considered as a new target in vector control strategy?

    No full text
    Les maladies vectorielles sont causées par des agents pathogènes transmis d’un hôte à un autre par un insecte vecteur. Le moyen de lutte le plus efficace contre ces maladies reste à l’heure actuelle l’utilisation de produits phytosanitaires comme les insecticides. Cependant, l’utilisation non raisonnée des insecticides au cours des dernières décennies a conduit à l’apparition de populations d’insectes résistants entrainant une diminution de l’efficacité des traitements insecticides. De plus, les politiques institutionnelles tendent vers une diminution du nombre de substances disponibles. Il devient donc nécessaire de mettre en place de nouvelles stratégies de lutte contre les insectes vecteurs de maladies. Des études chez la blatte Periplaneta americana ont montré que l’activation des récepteurs muscariniques (mAChRs) entrainait l’augmentation du calcium intracellulaire. Cette augmentation de calcium permet d’accroître la sensibilité des cibles aux insecticides. Ainsi, lesmAChRs pourraient jouer un rôle dans les nouvelles stratégies de lutte contre les insectes nuisibles. Nous avons donc entrepris de caractériser les mAChRs chez le moustique Anopheles gambiae, vecteur du paludisme. Trois types de mAChRs ont été mis en évidence : le mAChR-A, deux variants du mAChR-B (mAChR-B1 et mAChR-B2) et le mAChR-C. L’expression du mAChR-A dans un système hétérologue, les cellules Sf9, a permis sa caractérisation fonctionnelle et pharmacologique. Des tests de mesure de l’activité de l’acétylcholinestérase 1 (AChE1) d’An. gambiae dans les cellules Sf9 ont montré que l’activation du mAChR-A module la sensibilité de l’AChE1 au chlorpyrifos-éthyl, un insecticide organophosphoré. L’ensemble des résultats suggère que les mAChRs peuvent être considérés comme des facteurs importants dans le développement de nouvelles stratégies de lutte contre les insectes vecteurs de maladieVector-borne diseases are caused by pathogen transmission from one host to another by insects. The main way to prevent those diseases is vector control. Chemical pesticides such as insecticides have been used successfully in controlling several pest insects. However, their widespread uses during several decades have led to the emergence of resistance. Moreover, institutional policies tend to be more and more restrictive to the use of insecticides. It is then necessary to develop new strategies to control the insects responsible for these diseases. Previous studies, on the cockroaches Periplaneta americana, shown that intracellular calcium increase via muscarinic receptors (mAChRs) activation leads to increase the sensitivity of the neuronal target to insecticide. In this work, the study of mAChRsfrom Anopheles gambiae, the main vector of malaria, was performed. Three types of mAChRs have been found and named mAChR-A, mAChR-B (two variants mAChR-B1 and mAChR-B2) and mAChR-C. Using calcium imaging technique, the functional and pharmacological characterisation of mAChR-A expressed in a heterologous system, the Sf9 cells, was performed. After co-expression of mAChR-A and An. gambiae acetylcholinesterase 1 (AChE1) in Sf9 cells, we shown that mAChR-A activation modulates AChE1 sensitivity to an organophosphate insecticide, the chlorpyrifos-ethyl. Taken together, these results suggest that mAChRs can be considered as important factors in the development of new strategies for controlling pest insect
    corecore