769 research outputs found

    A proximal femoral implant preserves physiological bone deformation: a biomechanical investigation in cadaveric bones

    No full text
    The aim of this study was to compare the perturbances in bone deformation patterns of the proximal femur due to a conventional cemented femoral stem and a novel uncemented implant designed on the principles of osseointegration. Five matched pairs of fresh frozen human femora were mechanically tested. Bone deformation patterns, measured with a video digitizing system under 1.5 kN joint force, showed that the cemented Spectron femoral implant caused significant alterations to the proximal femoral deformation pattern, whereas the Gothenburg osseointegrated titanium femoral implant did not significantly alter the bone behaviour (p < 0.05). Vertical micromotions measured under 1 kN after 1000 cycles were within the threshold of movement tolerable for bone ingrowth (21 microm for the Gothenburg system and 26 microm for the cemented implant).Published versio

    A histomorphometric study of dental implants with different surface characteristics

    Get PDF
    PURPOSE. One of the major keys to achieve successful osseointegration of the implant is its surface properties. The aim of this study was to investigate the bone response to dental implants with different surface characteristics using the rabbit tibia model. Tricalcium phosphate (TCP) coated, anodic oxidized and turned (control) surfaces were compared. MATERIALS AND METHODS. Seventy two implants were placed in the tibia of eighteen rabbits. Nine rabbits were sacrificed at 3 weeks of healing and the remaining nine were sacrificed at 6 weeks of healing. The bone-to-implant contact (BIC) and the bone volume density (BVD) were assessed by light microscope after 3 and 6 weeks of healing. RESULTS. Statistical analysis showed that no significant differences in the BIC and BVD were observed between the different implant surfaces and the control group at 3 weeks and 6 weeks of healing. Data also suggested that the BVD of all the surfaces showed significant difference at 3 and 6 weeks. CONCLUSION. The present study has showed that osseointegration occurred in all investigated types of surface-treated implants. In the current study all of the threads of the implants were observed to calculate BIC and BVD values (instead of choosing some of the threads from the bone cortex for example), which didn`t make BIC or BVD percentage values better than in the control group, therefore the clinical relevance of these results remains to be shown. [J Adv Prosthodont 2010;2:142-7]

    Surface Modification of Biomedical and Dental Implants and the Processes of Inflammation, Wound Healing and Bone Formation

    Get PDF
    Bone adaptation or integration of an implant is characterized by a series of biological reactions that start with bone turnover at the interface (a process of localized necrosis), followed by rapid repair. The wound healing response is guided by a complex activation of macrophages leading to tissue turnover and new osteoblast differentiation on the implant surface. The complex role of implant surface topography and impact on healing response plays a role in biological criteria that can guide the design and development of future tissue-implant surface interfaces
    corecore