9 research outputs found

    The CARBA-MAP study: national mapping of carbapenemases in Spain (2014–2018)

    Get PDF
    Introduction:Infections caused by carbapenem-resistant Enterobacterales (CRE) and carbapenem-resistant Pseudomonas aeruginosa, including isolates producing acquired carbapenemases, constitute a prevalent health problem worldwide. The primary objective of this study was to determine the distribution of the different carbapenemases among carbapenemase-producing Enterobacterales (CPE, specifically Escherichia coli, Klebsiella pneumoniae, Enterobacter cloacae complex, and Klebsiella aerogenes) and carbapenemase-producing P. aeruginosa (CPPA) in Spain from January 2014 to December 2018.Methods: A national, retrospective, cross-sectional multicenter study was performed. The study included the first isolate per patient and year obtained from clinical samples and obtained for diagnosis of infection in hospitalized patients. A structured questionnaire was completed by the participating centers using the REDCap platform, and results were analyzed using IBM SPSS Statistics 29.0.0.Results: A total of 2,704 carbapenemase-producing microorganisms were included, for which the type of carbapenemase was determined in 2692 cases: 2280 CPE (84.7%) and 412 CPPA (15.3%), most often using molecular methods and immunochromatographic assays. Globally, the most frequent types of carbapenemase in Enterobacterales and P. aeruginosa were OXA-48-like, alone or in combination with other enzymes (1,523 cases, 66.8%) and VIM (365 cases, 88.6%), respectively. Among Enterobacterales, carbapenemase-producing K. pneumoniae was reported in 1821 cases (79.9%), followed by E. cloacae complex in 334 cases (14.6%). In Enterobacterales, KPC is mainly present in the South and South-East regions of Spain and OXA-48-like in the rest of the country. Regarding P. aeruginosa, VIM is widely distributed all over the country. Globally, an increasing percentage of OXA-48-like enzymes was observed from 2014 to 2017. KPC enzymes were more frequent in 2017–2018 compared to 2014–2016.Discussion: Data from this study help to understand the situation and evolution of the main species of CPE and CPPA in Spain, with practical implications for control and optimal treatment of infections caused by these multi-drug resistant organisms

    Characterizing carbapenemase-producing Escherichia coli isolates from Spain: high genetic heterogeneity and wide geographical spread

    Get PDF
    IntroductionCarbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure.MethodsNinety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed.Results and discussionThe 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were blaOXA-48 (45.6%), blaVIM-1 (23.3%), blaNDM-1 (7.8%), blaKPC-3 (6.7%), and blaNDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored blaNDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored blaVIM-1. blaOXA-48 was found in IncF plasmids in eight isolates. Metallo-β-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections

    CARB-ES-19 Multicenter Study of Carbapenemase-Producing Klebsiella pneumoniae and Escherichia coli From All Spanish Provinces Reveals Interregional Spread of High-Risk Clones Such as ST307/OXA-48 and ST512/KPC-3

    Get PDF
    ObjectivesCARB-ES-19 is a comprehensive, multicenter, nationwide study integrating whole-genome sequencing (WGS) in the surveillance of carbapenemase-producing K. pneumoniae (CP-Kpn) and E. coli (CP-Eco) to determine their incidence, geographical distribution, phylogeny, and resistance mechanisms in Spain.MethodsIn total, 71 hospitals, representing all 50 Spanish provinces, collected the first 10 isolates per hospital (February to May 2019); CPE isolates were first identified according to EUCAST (meropenem MIC > 0.12 mg/L with immunochromatography, colorimetric tests, carbapenem inactivation, or carbapenem hydrolysis with MALDI-TOF). Prevalence and incidence were calculated according to population denominators. Antibiotic susceptibility testing was performed using the microdilution method (EUCAST). All 403 isolates collected were sequenced for high-resolution single-nucleotide polymorphism (SNP) typing, core genome multilocus sequence typing (cgMLST), and resistome analysis.ResultsIn total, 377 (93.5%) CP-Kpn and 26 (6.5%) CP-Eco isolates were collected from 62 (87.3%) hospitals in 46 (92%) provinces. CP-Kpn was more prevalent in the blood (5.8%, 50/853) than in the urine (1.4%, 201/14,464). The cumulative incidence for both CP-Kpn and CP-Eco was 0.05 per 100 admitted patients. The main carbapenemase genes identified in CP-Kpn were blaOXA–48 (263/377), blaKPC–3 (62/377), blaVIM–1 (28/377), and blaNDM–1 (12/377). All isolates were susceptible to at least two antibiotics. Interregional dissemination of eight high-risk CP-Kpn clones was detected, mainly ST307/OXA-48 (16.4%), ST11/OXA-48 (16.4%), and ST512-ST258/KPC (13.8%). ST512/KPC and ST15/OXA-48 were the most frequent bacteremia-causative clones. The average number of acquired resistance genes was higher in CP-Kpn (7.9) than in CP-Eco (5.5).ConclusionThis study serves as a first step toward WGS integration in the surveillance of carbapenemase-producing Enterobacterales in Spain. We detected important epidemiological changes, including increased CP-Kpn and CP-Eco prevalence and incidence compared to previous studies, wide interregional dissemination, and increased dissemination of high-risk clones, such as ST307/OXA-48 and ST512/KPC-3

    Pseudomonas aeruginosa Community-Onset Bloodstream Infections: Characterization, Diagnostic Predictors, and Predictive Score Development-Results from the PRO-BAC Cohort

    No full text
    Abstract Community-onset bloodstream infections (CO-BSI) caused by gram-negative bacilli are common and associated with significant mortality; those caused by Pseudomonas aeruginosa are associated with worse prognosis and higher rates of inadequateempirical antibiotic treatment. The aims of this study were to describe the characteristics of patients with CO-BSI caused by P. aeruginosa, to identify predictors, and to develop a predictive score for P. aeruginosa CO-BSI. Materials/methods: PROBAC is a prospective cohort including patients >14 years with BSI from 26 Spanish hospitals between October 2016 and May 2017. Patients with monomicrobial P. aeruginosa CO-BSI and monomicrobial Enterobacterales CO-BSI were included. Variables of interest were collected. Independent predictors of Pseudomonas aeruginosa CO-BSI were identified by logistic regression and a prediction score was developed. Results: A total of 78patients with P. aeruginosa CO-BSI and 2572 with Enterobacterales CO-BSI were included. Patients with P. aeruginosa had a median age of 70 years (IQR 60-79), 68.8% were male, median Charlson score was 5 (IQR 3-7), and 30-daymortality was 18.5%. Multivariate analysis identified the following predictors of CO-BSI-PA [adjusted OR (95% CI)]: male gender [1.89 (1.14-3.12)], haematological malignancy [2.45 (1.20-4.99)], obstructive uropathy [2.86 (1.13-3.02)], source of infection other than urinary tract, biliary tract or intra-abdominal [6.69 (4.10-10.92)] and healthcare-associated BSI [1.85 (1.13-3.02)]. Anindex predictive of CO-BSI-PA was developed; scores ? 3.5 showed a negative predictive value of 89% and an area under the receiver operator curve (ROC) of 0.66. Conclusions: We did not find a good predictive score of P. aeruginosa CO-BSI due to its relatively low incidence in the overall population. Our model includes variables that are easy to collect in real clinical practice and could be useful to detect patients with very low risk of P. aeruginosa CO-BSI.This work was financed by grants from the Plan Nacional de I + D+i 2013–2016-Instituto de Salud Carlos III (Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades) [PI16/01432]; and Spanish Network for Research in Infectious Diseases (REIPI) [RD16/0016/0001; RD16/0016/0008]; co-financed by the European Development Regional Fund “A way to achieve Europe”, Operative program Intelligent Growth 2014–2020.Pseudomonas aeruginosaBacteraemiaBloodstream infectionCommunity-onsetEpidemiolog

    Pseudomonas aeruginosa Community-Onset Bloodstream Infections: Characterization, Diagnostic Predictors, and Predictive Score Development—Results from the PRO-BAC Cohort

    No full text
    Community-onset bloodstream infections (CO-BSI) caused by gram-negative bacilli are common and associated with significant mortality; those caused by Pseudomonas aeruginosa are associated with worse prognosis and higher rates of inadequateempirical antibiotic treatment. The aims of this study were to describe the characteristics of patients with CO-BSI caused by P. aeruginosa, to identify predictors, and to develop a predictive score for P. aeruginosa CO-BSI. Materials/methods: PROBAC is a prospective cohort including patients >14 years with BSI from 26 Spanish hospitals between October 2016 and May 2017. Patients with monomicrobial P. aeruginosa CO-BSI and monomicrobial Enterobacterales CO-BSI were included. Variables of interest were collected. Independent predictors of Pseudomonas aeruginosa CO-BSI were identified by logistic regression and a prediction score was developed. Results: A total of 78patients with P. aeruginosa CO-BSI and 2572 with Enterobacterales CO-BSI were included. Patients with P. aeruginosa had a median age of 70 years (IQR 60–79), 68.8% were male, median Charlson score was 5 (IQR 3–7), and 30-daymortality was 18.5%. Multivariate analysis identified the following predictors of CO-BSI-PA [adjusted OR (95% CI)]: male gender [1.89 (1.14–3.12)], haematological malignancy [2.45 (1.20–4.99)], obstructive uropathy [2.86 (1.13–3.02)], source of infection other than urinary tract, biliary tract or intra-abdominal [6.69 (4.10–10.92)] and healthcare-associated BSI [1.85 (1.13–3.02)]. Anindex predictive of CO-BSI-PA was developed; scores ≥ 3.5 showed a negative predictive value of 89% and an area under the receiver operator curve (ROC) of 0.66. Conclusions: We did not find a good predictive score of P. aeruginosa CO-BSI due to its relatively low incidence in the overall population. Our model includes variables that are easy to collect in real clinical practice and could be useful to detect patients with very low risk of P. aeruginosa CO-BSI

    Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: a nation-wide five-year time lapse analysisResearch in context

    No full text
    Summary: Background: Pseudomonas aeruginosa healthcare-associated infections are one of the top antimicrobial resistance threats world-wide. In order to analyze the current trends, we performed a Spanish nation-wide high-resolution analysis of the susceptibility profiles, the genomic epidemiology and the resistome of P. aeruginosa over a five-year time lapse. Methods: A total of 3.180 nonduplicated P. aeruginosa clinical isolates from two Spanish nation-wide surveys performed in October 2017 and 2022 were analyzed. MICs of 13 antipseudomonals were determined by ISO-EUCAST. Multidrug resistance (MDR)/extensively drug resistance (XDR)/difficult to treat resistance (DTR)/pandrug resistance (PDR) profiles were defined following established criteria. All XDR/DTR isolates were subjected to whole genome sequencing (WGS). Findings: A decrease in resistance to all tested antibiotics, including older and newer antimicrobials, was observed in 2022 vs 2017. Likewise, a major reduction of XDR (15.2% vs 5.9%) and DTR (4.2 vs 2.1%) profiles was evidenced, and even more patent among ICU isolates [XDR (26.0% vs 6.0%) and DTR (8.9% vs 2.6%)] (p < 0.001). The prevalence of Extended-spectrum β-lactamase/carbapenemase production was slightly lower in 2022 (2.1%. vs 3.1%, p = 0.064). However, there was a significant increase in the proportion of carbapenemase production among carbapenem-resistant strains (29.4% vs 18.1%, p = 0.0246). While ST175 was still the most frequent clone among XDR, a slight reduction in its prevalence was noted (35.9% vs 45.5%, p = 0.106) as opposed to ST235 which increased significantly (24.3% vs 12.3%, p = 0.0062). Interpretation: While the generalized decrease in P. aeruginosa resistance, linked to a major reduction in the prevalence of XDR strains, is encouraging, the negative counterpart is the increase in the proportion of XDR strains producing carbapenemases, associated to the significant advance of the concerning world-wide disseminated hypervirulent high-risk clone ST235. Continued high-resolution surveillance, integrating phenotypic and genomic data, is necessary for understanding resistance trends and analyzing the impact of national plans on antimicrobial resistance. Funding: MSD and the Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación and Unión Europea—NextGenerationEU

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Erratum to: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) (Autophagy, 12, 1, 1-222, 10.1080/15548627.2015.1100356

    No full text
    non present

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore