4 research outputs found

    Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis

    No full text
    Insulin signaling in the hypothalamus plays a role in maintaining body weight. Studies suggest that the forkhead transcription factor Foxo1 is an important mediator of insulin signaling in peripheral tissues. Here we demonstrate that in normal mice, hypothalamic Foxo1 expression is reduced by the anorexigenic hormones insulin and leptin. These hormones' effects on feeding are inhibited when hypothalamic Foxo1 is activated, establishing a new signaling pathway through which insulin and leptin regulate food intake in hypothalamic neurons. Moreover, activation of Foxo1 in the hypothalamus increases food intake and body weight, whereas inhibition of Foxo1 decreases both. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, but suppresses the transcription of anorexigenic proopiomelanocortin by antagonizing the activity of signal transducer-activated transcript-3 (STAT3). Our data suggest that hypothalamic Foxo1 is an important regulator of food intake and energy balance

    Clusterin and lrp2 are critical components of the hypothalamic feeding regulatory pathway

    No full text
    Hypothalamic feeding circuits are essential for the maintenance of energy balance. There have been intensive efforts to discover new biological molecules involved in these pathways. Here we report that central administration of clusterin, also called apolipoprotein J, causes anorexia, weight loss and activation of hypothalamic signal transduction-activated transcript-3 in mice. In contrast, inhibition of hypothalamic clusterin action results in increased food intake and body weight, leading to adiposity. These effects are likely mediated through the mutual actions of the low-density lipoprotein receptor-related protein-2, a potential receptor for clusterin, and the long-form leptin receptor. In response to clusterin, the low-density lipoprotein receptor-related protein-2 binding to long-form leptin receptor is greatly enhanced in cultured neuronal cells. Furthermore, long-form leptin receptor deficiency or hypothalamic low-density lipoprotein receptor-related protein-2 suppression in mice leads to impaired hypothalamic clusterin signalling and actions. Our study identifies the hypothalamic clusterin–low-density lipoprotein receptor-related protein-2 axis as a novel anorexigenic signalling pathway that is tightly coupled with long-form leptin receptor-mediated signalling

    Role of hypothalamic Foxo1 in the regulation of food intake and energy homeostasis

    No full text
    Insulin signaling in the hypothalamus plays a role in maintaining body weight. Studies suggest that the forkhead transcription factor Foxo1 is an important mediator of insulin signaling in peripheral tissues. Here we demonstrate that in normal mice, hypothalamic Foxo1 expression is reduced by the anorexigenic hormones insulin and leptin. These hormones' effects on feeding are inhibited when hypothalamic Foxo1 is activated, establishing a new signaling pathway through which insulin and leptin regulate food intake in hypothalamic neurons. Moreover, activation of Foxo1 in the hypothalamus increases food intake and body weight, whereas inhibition of Foxo1 decreases both. Foxo1 stimulates the transcription of the orexigenic neuropeptide Y and Agouti-related protein through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway, but suppresses the transcription of anorexigenic proopiomelanocortin by antagonizing the activity of signal transducer-activated transcript-3 (STAT3). Our data suggest that hypothalamic Foxo1 is an important regulator of food intake and energy balance

    NF-κB Activation in Hypothalamic Pro-opiomelanocortin Neurons Is Essential in Illness- and Leptin-induced Anorexia*

    No full text
    Anorexia and weight loss are prevalent in infectious diseases. To investigate the molecular mechanisms underlying these phenomena, we established animal models of infection-associated anorexia by administrating bacterial and viral products, lipopolysaccharide (LPS) and human immunodeficiency virus-1 transactivator protein (Tat). In these models, we found that the nuclear factor-κB (NF-κB), a pivotal transcription factor for inflammation-related proteins, was activated in the hypothalamus. In parallel, administration of LPS and Tat increased hypothalamic pro-inflammatory cytokine production, which was abrogated by inhibition of hypothalamic NF-κB. In vitro, NF-κB activation directly stimulated the transcriptional activity of pro-opiomelanocortin (POMC), a precursor of anorexigenic melanocortin, and mediated the stimulatory effects of LPS, Tat, and pro-inflammatory cytokines on POMC transcription, implying the involvement of NF-κB in controlling feeding behavior. Consistently, hypothalamic injection of LPS and Tat caused a significant reduction in food intake and body weight, which was prevented by blockade of NF-κB and melanocortin. Furthermore, disruption of IκB kinase-β, an upstream kinase of NF-κB, in POMC neurons attenuated LPS- and Tat-induced anorexia. These findings suggest that infection-associated anorexia and weight loss are mediated via NF-κB activation in hypothalamic POMC neurons. In addition, hypothalamic NF-κB was activated by leptin, an important anorexigenic hormone, and mediates leptin-stimulated POMC transcription, indicating that hypothalamic NF-κB also serves as a downstream signaling pathway of leptin
    corecore