110 research outputs found

    Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair

    Get PDF
    Because of poor engraftment and safety concerns regarding mesenchymal stem cell (MSC) therapy, MSC-derived exosomes have emerged as an alternative cell-free therapy for myocardial infarction (MI). However, the diffusion of exosomes out of the infarcted heart following injection and the low productivity limit the potential of clinical applications. Here, we developed exosome-mimetic extracellular nanovesicles (NVs) derived from iron oxide nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs). The retention of injected IONP-MSC-derived NVs (IONP-NVs) within the infarcted heart was markedly augmented by magnetic guidance. Furthermore, IONPs significantly increased the levels of therapeutic molecules in IONP-MSCs and IONP-NVs, which can reduce the concern of low exosome productivity. The injection of IONP-NVs into the infarcted heart and magnetic guidance induced an early shift from the inflammation phase to the reparative phase, reduced apoptosis and fibrosis, and enhanced angiogenesis and cardiac function recovery. This approach can enhance the therapeutic potency of an MSC-derived NV therapy.

    A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs

    Get PDF
    Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs

    A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs

    Get PDF
    Muscle development and lipid accumulation in muscle critically affect meat quality of livestock. However, the genetic factors underlying myofiber-type specification and intramuscular fat (IMF) accumulation remain to be elucidated. Using two independent intercrosses between Western commercial breeds and Korean native pigs (KNPs) and a joint linkage-linkage disequilibrium analysis, we identified a 488.1-kb region on porcine chromosome 12 that affects both reddish meat color (a*) and IMF. In this critical region, only the MYH3 gene, encoding myosin heavy chain 3, was found to be preferentially overexpressed in the skeletal muscle of KNPs. Subsequently, MYH3-transgenic mice demonstrated that this gene controls both myofiber-type specification and adipogenesis in skeletal muscle. We discovered a structural variant in the promotor/regulatory region of MYH3 for which Q allele carriers exhibited significantly higher values of a* and IMF than q allele carriers. Furthermore, chromatin immunoprecipitation and cotransfection assays showed that the structural variant in the 5′-flanking region of MYH3 abrogated the binding of the myogenic regulatory factors (MYF5, MYOD, MYOG, and MRF4). The allele distribution of MYH3 among pig populations worldwide indicated that the MYH3 Q allele is of Asian origin and likely predates domestication. In conclusion, we identified a functional regulatory sequence variant in porcine MYH3 that provides novel insights into the genetic basis of the regulation of myofiber type ratios and associated changes in IMF in pigs. The MYH3 variant can play an important role in improving pork quality in current breeding programs.info:eu-repo/semantics/publishedVersio

    Clinical features and outcomes in spontaneous intramural small bowel hematoma: cohort study and literature review

    Get PDF
    Background/Aims Spontaneous intramural small bowel hematoma (SISBH) is an extremely rare complication of anticoagulant or antiplatelet therapy. We assessed the clinical characteristics and outcomes of patients with SISBH according to the anatomical location of the hematoma. Methods From January 2003 to February 2016, medical records for all patients hospitalized for SISBH at 2 tertiary referral hospitals were retrospectively reviewed. The primary outcome was requirement for surgery. Results A total of 37 patients were enrolled. The mean age was 74.1 years. Among them, 33 patients (89.2%) were taking anticoagulant and/or antiplatelet agents. Duodenal intramural hematoma was detected in 4 patients (10.8%), jejunal in 16 (43.2%), and ileal in 17 (45.9%). Compared to jejunal and ileal involvement, duodenal intramural hematoma was significantly associated with high Charlson comorbidity index and low levels of white blood cells, hemoglobin, and platelets in the blood. SISBH in the duodenum was related to thrombocytopenia in 3 patients following systemic chemotherapy for malignancy. All patients with SISBH showed clinical improvement with conservative therapy. Mean length of hospital stay was 9.35 days. Independent predictors of a hospital stay of more than 7 days were body weight less than 60 kg (odds ratio [OR], 12.213; 95% confidence interval [CI], 1.755–84.998; P=0.011) and a history of cerebrovascular accidents (OR, 6.667; 95% CI, 1.121–39.650; P=0.037). Conclusions Compared to jejunal and ileal involvement, thrombocytopenia may result in spontaneous duodenal intramural hematoma among patients who are treated with systemic chemotherapy for malignancies. Patients with SISBH have excellent clinical outcomes with conservative therapy regardless of the anatomical location of the hematoma

    Search for gravitational-lensing signatures in the full third observing run of the LIGO-Virgo network

    Get PDF
    Gravitational lensing by massive objects along the line of sight to the source causes distortions of gravitational wave-signals; such distortions may reveal information about fundamental physics, cosmology and astrophysics. In this work, we have extended the search for lensing signatures to all binary black hole events from the third observing run of the LIGO--Virgo network. We search for repeated signals from strong lensing by 1) performing targeted searches for subthreshold signals, 2) calculating the degree of overlap amongst the intrinsic parameters and sky location of pairs of signals, 3) comparing the similarities of the spectrograms amongst pairs of signals, and 4) performing dual-signal Bayesian analysis that takes into account selection effects and astrophysical knowledge. We also search for distortions to the gravitational waveform caused by 1) frequency-independent phase shifts in strongly lensed images, and 2) frequency-dependent modulation of the amplitude and phase due to point masses. None of these searches yields significant evidence for lensing. Finally, we use the non-detection of gravitational-wave lensing to constrain the lensing rate based on the latest merger-rate estimates and the fraction of dark matter composed of compact objects

    Anterior Cruciate Ligament Reconstructed Patients Who Recovered Normal Postural Control Have Dissimilar Brain Activation Patterns Compared to Healthy Controls

    No full text
    Postural control, which is a fundamental functional skill, reflects integration and coordination of sensory information. Damaged anterior cruciate ligament (ACL) may alter neural activation patterns in the brain, despite patients’ surgical reconstruction (ACLR). However, it is unknown whether ACLR patients with normal postural control have persistent neural adaptation in the brain. Therefore, we explored theta (4–8 Hz) and alpha-2 (10–12 Hz) oscillation bands at the prefrontal, premotor/supplementary motor, primary motor, somatosensory, and primary visual cortices, in which electrocortical activation is highly associated with goal-directed decision-making, preparation of movement, motor output, sensory input, and visual processing, respectively, during first 3 s of a single-leg stance at two different task complexities (stable/unstable) between ACLR patients and healthy controls. We observed that ACLR patients showed similar postural control ability to healthy controls, but dissimilar neural activation patterns in the brain. To conclude, we demonstrated that ACLR patients may rely on more neural sources on movement preparation in conjunction with sensory feedback during the early single-leg stance period relative to healthy controls to maintain postural control. This may be a compensatory protective mechanism to accommodate for the altered sensory inputs from the reconstructed knee and task complexity. Our study elucidates the strategically different brain activity utilized by ACLR patients to sustain postural control

    Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications

    No full text
    We report a new crystal engineering technique for the thickness-controlled growth of large-area organic electro-optic crystals in confined geometry optimal for THz wave photonics. We investigate the relationship between the material properties and THz generation characteristics to determine the optimal crystal characteristics for THz applications. Two different state-of-the-art nonlinear optical organic crystals are chosen as model crystals, ionic quinolinium-based and non-ionic polyene-based crystals. Both kinds of electro-optic crystals grown in confined geometry exhibit good optical quality, large area and sub-millimeter-scale thickness, which are optimal crystal characteristics for efficient THz wave generation. In order to investigate the relationship between crystal characteristics and optical-to-THz conversion characteristics, THz experiments with quinolinium crystals are performed and compared with theoretical calculations. The characteristics of the generated THz waves from as-grown quinolinium-based single crystals in confined geometry match well with those from very flat quinolinium crystals prepared from bulk crystals by a cutting method and also with theoretical calculations
    corecore