85 research outputs found

    Optimised insert design for improved single-molecule imaging and quantification through CRISPR-Cas9 mediated knock-in

    Get PDF
    © 2019, The Author(s). The use of CRISPR-Cas9 genome editing to introduce endogenously expressed tags has the potential to address a number of the classical limitations of single molecule localisation microscopy. In this work we present the first systematic comparison of inserts introduced through CRISPR-knock in, with the aim of optimising this approach for single molecule imaging. We show that more highly monomeric and codon optimised variants of mEos result in improved expression at the TubA1B locus, despite the use of identical guides, homology templates, and selection strategies. We apply this approach to target the G protein-coupled receptor (GPCR) CXCR4 and show a further insert dependent effect on expression and protein function. Finally, we show that compared to over-expressed CXCR4, endogenously labelled samples allow for accurate single molecule quantification on ligand treatment. This suggests that despite the complications evident in CRISPR mediated labelling, the development of CRISPR-PALM has substantial quantitative benefits

    Platelet glycoprotein VI cluster size is related to thrombus formation and phosphatidylserine exposure in collagen-adherent platelets under arterial shear

    Get PDF
    Background: Collagen-induced platelet activation is predominantly mediated by glycoprotein (GP) VI through formation of receptor clusters that coincide with the accumulation of signaling molecules and are hypothesized to drive strong and sustained platelet activation. Objectives: To determine the importance of GPVI clusters for thrombus formation in whole blood under shear. Methods: We utilized whole blood microfluidics and an anti-GPVI nanobody (Nb), Nb28, labeled with AlexaFluor 488, to assess the distribution of GPVI on the surface of platelets adhering to a range of collagen-like substrates with different platelet activation potentials. Results: Automated analysis of GPVI surface distribution on platelets supported the hypothesis that there is a relationship between GPVI cluster formation, thrombus size, and phosphatidylserine (PS) exposure. Substrates that supported the formation of macroclusters also induced significantly bigger aggregates, with increased amounts of PS-exposing platelets in comparison to substrates where no GPVI clusters were detected. Furthermore, we demonstrate that only direct inhibition of GPVI binding, but not of downstream signaling, is able to disrupt cluster formation. Conclusion: Labeled anti-GPVI Nb28 permits visualization of GPVI clustering under flow conditions. Furthermore, whilst inhibition of downstream signaling does not affect clustering, it does prevent thrombus formation. Therefore, GPVI macroclustering is a prerequisite for thrombus formation and platelet activation, namely, PS exposure, on highly GPVI-dependent collagen surfaces

    MAXI and NuSTAR observations of the faint X-ray transient MAXI J1848-015 in the GLIMPSE-C01 Cluster

    Get PDF
    We present the results of MAXI monitoring and two NuSTAR observations of the recently discovered faint X-ray transient MAXI J1848-015. Analysis of the MAXI light-curve shows that the source underwent a rapid flux increase beginning on 2020 December 20, followed by a rapid decrease in flux after only 5\sim5 days. NuSTAR observations reveal that the source transitioned from a bright soft state with unabsorbed, bolometric (0.10.1-100100 keV) flux F=6.9±0.1×1010ergcm2s1F=6.9 \pm 0.1 \times 10^{-10}\,\mathrm{erg\,cm^{-2}\,s^{-1}}, to a low hard state with flux F=2.85±0.04×1010ergcm2s1F=2.85 \pm 0.04 \times 10^{-10}\,\mathrm{erg\,cm^{-2}\,s^{-1}}. Given a distance of 3.33.3 kpc, inferred via association of the source with the GLIMPSE-C01 cluster, these fluxes correspond to an Eddington fraction of order 10310^{-3} for an accreting neutron star of mass M=1.4MM=1.4M_\odot, or even lower for a more massive accretor. However, the source spectra exhibit strong relativistic reflection features, indicating the presence of an accretion disk which extends close to the accretor, for which we measure a high spin, a=0.967±0.013a=0.967\pm0.013. In addition to a change in flux and spectral shape, we find evidence for other changes between the soft and hard states, including moderate disk truncation with the inner disk radius increasing from Rin3RgR_\mathrm{in}\approx3\,R_\mathrm{g} to Rin8RgR_\mathrm{in}\approx8\,R_\mathrm{g}, narrow Fe emission whose centroid decreases from 6.8±0.16.8\pm0.1 keV to 6.3±0.16.3 \pm 0.1 keV, and an increase in low-frequency (10310^{-3}-10110^{-1} Hz) variability. Due to the high spin we conclude that the source is likely to be a black hole rather than a neutron star, and we discuss physical interpretations of the low apparent luminosity as well as the narrow Fe emission.Comment: 19 pages, 9 figures, 3 tables. Accepted for publication in Ap

    Comparison of the GPVI inhibitors losartan and honokiol

    Get PDF
    <p>Losartan and honokiol are small molecules which have been described to inhibit aggregation of platelets by collagen. Losartan has been proposed to block clustering of GPVI but not to affect binding of collagen. Honokiol has been reported to bind directly to GPVI but only at a concentration that is three orders of magnitude higher than that needed for inhibition of aggregation. The mechanism of action of both inhibitors is so far unclear. In the present study, we confirm the inhibitory effects of both agents on platelet aggregation by collagen and show that both also block the aggregation induced by the activation of CLEC-2 or the low affinity immune receptor FcγRIIa at similar concentrations. For GPVI and CLEC-2, this inhibition is associated with a reduction in protein tyrosine phosphorylation of multiple proteins including Syk. In contrast, on a collagen surface, spreading of platelets and clustering of GPVI (measured by single molecule localisation microscopy) was not altered by losartan or honokiol. Furthermore, in flow whole-blood, both inhibitors suppressed the formation of multi-layered platelet thrombi at arteriolar shear rates at concentrations that hardly affect collagen-induced platelet aggregation in platelet rich plasma. Together, these results demonstrate that losartan and honokiol have multiple effects on platelets which should be considered in the use of these compounds as anti-platelet agents.</p

    FrenchFISH: Poisson Models for Quantifying DNA Copy Number From Fluorescence In Situ Hybridization of Tissue Sections

    Get PDF
    Purpose: Chromosomal aberration and DNA copy number change are robust hallmarks of cancer. The gold standard for detecting copy number changes in tumor cells is fluorescence in situ hybridization (FISH) using locus-specific probes that are imaged as fluorescent spots. However, spot counting often does not perform well on solid tumor tissue sections due to partially represented or overlapping nuclei. Materials and Methods: To overcome these challenges, we have developed a computational approach called FrenchFISH, which comprises a nuclear volume correction method coupled with two types of Poisson models: either a Poisson model for improved manual spot counting without the need for control probes or a homogeneous Poisson point process model for automated spot counting. Results: We benchmarked the performance of FrenchFISH against previous approaches using a controlled simulation scenario and tested it experimentally in 12 ovarian carcinoma FFPE-tissue sections for copy number alterations at three loci (c-Myc, hTERC, and SE7). FrenchFISH outperformed standard spot counting with 74% of the automated counts having &lt; 1 copy number difference from the manual counts and 17% having &lt; 2 copy number differences, while taking less than one third of the time of manual counting. Conclusion: FrenchFISH is a general approach that can be used to enhance clinical diagnosis on sections of any tissue by both speeding up and improving the accuracy of spot count estimates

    Spectral and Timing Analysis of NuSTAR and Swift/XRT Observations of the X-Ray Transient MAXI J0637-430

    Get PDF
    We present results for the first observed outburst from the transient X-ray binary source MAXI J0637-430. This study is based on eight observations from the Nuclear Spectroscopic Telescope Array (NuSTAR) and six observations from the Neil Gehrels Swift Observatory X-Ray Telescope (Swift/XRT) collected from 2019 November 19 to 2020 April 26 as the 3-79 keV source flux declined from 8.2 × 10-10 to 1.4 × 10-12 erg cm-2 s-1. We see the source transition from a soft state with a strong disk-blackbody component to a hard state dominated by a power-law or thermal Comptonization component. NuSTAR provides the first reported coverage of MAXI J0637-430 above 10 keV, and these broadband spectra show that a two-component model does not provide an adequate description of the soft-state spectrum. As such, we test whether blackbody emission from the plunging region could explain the excess emission. As an alternative, we test a reflection model that includes a physical Comptonization continuum. Finally, we also test a spectral component based on reflection of a blackbody illumination spectrum, which can be interpreted as a simple approximation to the reflection produced by returning disk radiation due to the bending of light by the strong gravity of the black hole. We discuss the physical implications of each scenario and demonstrate the value of constraining the source distance
    corecore