153 research outputs found
Cross-Dehydrogenative Couplings between Indoles and β-Keto Esters : Ligand-Assisted Ligand Tautomerization and Dehydrogenation via a Proton-Assisted Electron Transfer to Pd(II)
Cross-dehydrogenative coupling reactions between -ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of -ketoesters and indoles. The mechanism of the reaction between a prototypical -ketoester, ethyl 2-oxocyclopentanonecarboxylate and N-methylindole, has been studied experimentally by monitoring the temporal course of the reaction by 1H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (B97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The compu-tational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a change in the coordination mode of the -keto ester ligand from an O,O’-chelate to an C-bound Pd enolate. This ligand tautom-erization event is assisted by the -bound indole ligand. Subsequent scission of the ’-C–H bond takes place via a proton-assisted electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to pro-duce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to be viable routes for the coupling step
COL4A1 Mutations Cause Ocular Dysgenesis, Neuronal Localization Defects, and Myopathy in Mice and Walker-Warburg Syndrome in Humans
Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders
Somatosensory processing in neurodevelopmental disorders
The purpose of this article is to review the role of somatosensory perception in typical development, its aberration in a range of neurodevelopmental disorders, and the potential relations between tactile processing abnormalities and central features of each disorder such as motor, communication, and social development. Neurodevelopmental disorders that represent a range of symptoms and etiologies, and for which multiple peer-reviewed articles on somatosensory differences have been published, were chosen to include in the review. Relevant studies in animal models, as well as conditions of early sensory deprivation, are also included. Somatosensory processing plays an important, yet often overlooked, role in typical development and is aberrant in various neurodevelopmental disorders. This is demonstrated in studies of behavior, sensory thresholds, neuroanatomy, and neurophysiology in samples of children with Fragile X syndrome, autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and cerebral palsy (CP). Impaired somatosensory processing is found in a range of neurodevelopmental disorders and is associated with deficits in communication, motor ability, and social skills in these disorders. Given the central role of touch in early development, both experimental and clinical approaches should take into consideration the role of somatosensory processing in the etiology and treatment of neurodevelopmental disorders
Visual attention to words in different languages in bilinguals: A magnetoencephalographic study
We recorded evoked magnetic fields from bilingual subjects while they were visually presented with words. The task was to count words in a target language when most of the words were in another language and there were also nontarget deviants in a third language. Our results indicate that in a multilingual visual environment there is a different need for attention to a nontarget language depending on whether the subject is attending to words in the subject's first (L1) or second (L2) language. When words in L2 are attended to, more effort appears to be devoted to words in the nontarget language than when words in L1 are attended to. In addition, attention to the nontarget language while counting words in L2 does not seem to depend on the age of acquisition of L2
Affective Analysis of Abstract Paintings Using Statistical Analysis and Art Theory
This research thesis aims to provide a novel approach to Emotion Recognition of Images: based on empirical studies, we employ the state-of-the-art computer vision techniques in order to understand what makes an abstract artwork emotional. We identify and quantify the emotional regions of abstract paintings. We also investigate the contributions of the main aspects present on abstract artworks (i.e., colour, shape and texture) to automatically predict emotional valence of them. By using eye-tracking recordings we investigate the link between the detected emotional content and the way people look at abstract paintings. We apply a bottom-up saliency model to compare with eye-tracking in order to predict the emotional salient regions of abstract paintings. Finally, we use the metadata associated to the paintings (e.g., title, description and/or artist statement) and correlate it with the emotional responses of the paintings. This research opens opportunity to understand why an abstract painting is perceived as emotional from global and local scales. Moreover, this work provides to art historians and art researches with a new perspective on the analysis of abstract paintings
- …