33 research outputs found

    Observables in Topological Yang-Mills Theories

    Full text link
    Using topological Yang-Mills theory as example, we discuss the definition and determination of observables in topological field theories (of Witten-type) within the superspace formulation proposed by Horne. This approach to the equivariant cohomology leads to a set of bi-descent equations involving the BRST and supersymmetry operators as well as the exterior derivative. This allows us to determine superspace expressions for all observables, and thereby to recover the Donaldson-Witten polynomials when choosing a Wess-Zumino-type gauge.Comment: 39 pages, Late

    On the symmetries of BF models and their relation with gravity

    Get PDF
    The perturbative finiteness of various topological models (e.g. BF models) has its origin in an extra symmetry of the gauge-fixed action, the so-called vector supersymmetry. Since an invariance of this type also exists for gravity and since gravity is closely related to certain BF models, vector supersymmetry should also be useful for tackling various aspects of quantum gravity. With this motivation and goal in mind, we first extend vector supersymmetry of BF models to generic manifolds by incorporating it into the BRST symmetry within the Batalin-Vilkovisky framework. Thereafter, we address the relationship between gravity and BF models, in particular for three-dimensional space-time.Comment: 29 page

    A Vector Supersymmetry in Noncommutative U(1) Gauge Theory with the Slavnov Term

    Get PDF
    We consider noncommutative U(1) gauge theory with the additional term, involving a scalar field lambda, introduced by Slavnov in order to cure the infrared problem. we show that this theory, with an appropriate space-like axial gauge-fixing, wxhibits a linear vector supersymmetry similar to the one present in the 2-dimensional BF model. This vector supersymmetry implies that all loop corrections are independent of the λAA\lambda AA-vertex and thereby explains why Slavnov found a finite model for the same gauge-fixing.Comment: 18 pages, 3 figures; v2 Acknowledgments adde

    Canonical Analysis of the Jackiw-Teitelboim Model in the Temporal Gauge. I. The Classical Theory

    Full text link
    As a preparation for its quantization in the loop formalism, the 2-dimensional gravitation model of Jackiw and Teitelboim is analysed in the classical canonical formalism. The dynamics is of pure constraints as it is well-known. A partial gauge fixing of the temporal type being performed, the resulting second class constraints are sorted out and the corresponding Dirac bracket algebra is worked out. Dirac observables of this classical theory are then calculated.Comment: 15 pages, Latex. Misprint correction

    The Hilbert space of Chern-Simons theory on the cylinder. A Loop Quantum Gravity approach

    Full text link
    As a laboratory for loop quantum gravity, we consider the canonical quantization of the three-dimensional Chern-Simons theory on a noncompact space with the topology of a cylinder. Working within the loop quantization formalism, we define at the quantum level the constraints appearing in the canonical approach and completely solve them, thus constructing a gauge and diffeomorphism invariant physical Hilbert space for the theory. This space turns out to be infinite dimensional, but separable.Comment: Minor changes and some references added. Latex, 16 pages, 1 figur

    Ghost Equations and Diffeomorphism Invariant Theories

    Full text link
    Four-dimensional Einstein gravity in the Palatini first order formalism is shown to possess a vector supersymmetry of the same type as found in the topological theories for Yang-Mills fields. A peculiar feature of the gravitational theory, characterized by diffeomorphism invariance, is a direct link of vector supersymmetry with the field equation of motion for the Faddeev-Popov ghost of diffeomorphisms.Comment: LaTex, 10 pages; sign corrected in eq. (3.9); added and completed reference

    Enhancing caregivers’ understanding of dementia and tailoring activities in frontotemporal dementia:two case studies

    Get PDF
    PURPOSE: To describe the intervention process and results of the Tailored Activities Program (TAP) in two people diagnosed with Frontotemporal Dementia (FTD). METHOD: TAP is an occupational therapy (OT) community-based intervention program that prescribes personalised activities to reduce difficult behaviours of dementia. The OT works with carers over a 4-month period (assessment, activity prescription, and generalisation of strategies). Study measures were collected (blind researcher) pre- and post- intervention: cognition, functional disability, behavioural symptoms, and Caregiver Confidence and Vigilance. RESULTS: A 51-year-old woman with behavioural-variant FTD could consistently engage in more activities post-intervention, with scores indicating improvements to behaviour, function, and caregiver confidence. A 63-year-old man with semantic variant FTD engaged well in the prescribed activities, with scores reflecting reduced carer distress regarding challenging behaviours and improved caregiver vigilance. CONCLUSIONS: TAP is efficacious in FTD, allowing for differences in approach for FTD subtype, where behavioural symptoms are very severe and pervasive

    Symmetries and observables in topological gravity

    Full text link
    After a brief review of topological gravity, we present a superspace approach to this theory. This formulation allows us to recover in a natural manner various known results and to gain some insight into the precise relationship between different approaches to topological gravity. Though the main focus of our work is on the vielbein formalism, we also discuss the metric approach and its relationship with the former formalism.Comment: 34 pages; a few explanations added in subsection 2.2.1, published version of pape

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events

    Genome-wide analyses as part of the international FTLD-TDP whole-genome sequencing consortium reveals novel disease risk factors and increases support for immune dysfunction in FTLD

    Get PDF
    Frontotemporal lobar degeneration with neuronal inclusions of the TAR DNA-binding protein 43 (FTLD-TDP) represents the most common pathological subtype of FTLD. We established the international FTLD-TDP whole genome sequencing consortium to thoroughly characterize the known genetic causes of FTLD-TDP and identify novel genetic risk factors. Through the study of 1,131 unrelated Caucasian patients, we estimated that C9orf72 repeat expansions and GRN loss-of-function mutations account for 25.5% and 13.9% of FTLD-TDP patients, respectively. Mutations in TBK1 (1.5%) and other known FTLD genes (1.4%) were rare, and the disease in 57.7% of FTLD-TDP patients was unexplained by the known FTLD genes. To unravel the contribution of common genetic factors to the FTLD-TDP etiology in these patients, we conducted a two-stage association study comprising the analysis of whole-genome sequencing data from 517 FTLD-TDP patients and 838 controls, followed by targeted genotyping of the most associated genomic loci in 119 additional FTLD-TDP patients and 1653 controls. We identified three genome-wide significant FTLD-TDP risk loci: one new locus at chromosome 7q36 within the DPP6 gene led by rs118113626 (pvalue=4.82e-08, OR=2.12), and two known loci: UNC13A, led by rs1297319 (pvalue=1.27e-08, OR=1.50) and HLA-DQA2 led by rs17219281 (pvalue=3.22e-08, OR=1.98). While HLA represents a locus previously implicated in clinical FTLD and related neurodegenerative disorders, the association signal in our study is independent from previously reported associations. Through inspection of our whole genome sequence data for genes with an excess of rare loss-of-function variants in FTLD-TDP patients (n≥3) as compared to controls (n=0), we further discovered a possible role for genes functioning within the TBK1-related immune pathway (e.g. DHX58, TRIM21, IRF7) in the genetic etiology of FTLD-TDP. Together, our study based on the largest cohort of unrelated FTLD-TDP patients assembled to date provides a comprehensive view of the genetic landscape of FTLD-TDP, nominates novel FTLD-TDP risk loci, and strongly implicates the immune pathway in FTLD-TDP pathogenesis
    corecore